

DBA 1-17 Tantor :
PostgreSQL 17 Administration

Student Guide

 Author: Oleg Ivanov

Table of contents
chapter Tantor Postgres: PostgreSQL Administration 17 page

 Introduction 10
 Preliminary preparation
 Course materials
 Course Sections
 About the course
 About Tantor Labs
 Tantor Postgres DBMS
 Tantor xData
 Tantor Platform
 Tantor PipelineDB Extension
 PostgreSQL Extensions Rework
 PGBootCamp Conferences
1 a Installation 22
 Prerequisites
 Checking the possibility of installation
 Installer
 Local installation
 Installation process
 After installation
 Configurators
 Creating a cluster using the initdb utility
1b Control 31
 pg_ctl instance management utility
 postgres process
 Managing an instance via systemctl
 Working in a docker container
 Three modes of stopping an instance
 Stopping an instance
 Stopping an instance
 Management utilities (SQL command wrappers)
 Backup Management Utilities
 Management utilities (other)
 Management Utilities (continued)
1c psql 43
 Terminal client psql
 psql : connect to database
 psql : connection parameters
 psql commands
 Formatting psql output
 Output the result in HTML format
 Output the result in extended format
 Prompt for entering commands (prompt) psql
 Autocommit transactions and running psql commands
 psql variables
 Executing batch files in psql
 Graphical applications: DBeaver
 Graphical applications: pgAdmin
 Graphic Applications: Tantor Platform
 Demonstration
 Practice
2a Architecture 60
 PostgreSQL instance
 PostgreSQL instance
 Starting an instance, postgres process
 Starting the server process
 Shared memory of instance processes
 System Catalog Table Cache
 View pg_stat_slru
 Local process memory

 Performance pg_backend_memory_contexts
 Function pg_log_backend_memory_contexts (PID)
 Memory structures that support the buffer cache
 Memory structures that support the buffer cache
 Search for a free buffer
 Dirty Buffer Eviction Algorithm
 Buffer Replacement Strategies
 Search for a block in the buffer cache
 Pinning the buffer (pin) and locking content_lock
 Freeing buffers when deleting files
 bgwriter background writing process
 Clearing the buffer cache by the bgwriter process
 Checkpoint
 Steps to perform a checkpoint
 Steps to perform a checkpoint
 Interaction of instance processes with disk
 Practice
2b Multiversion 86
 Row multiversioning
 Tables
 Service columns
 Data block structure
 String version header
 Insert row
 Update line
 Delete line
 Smallest data types: boolean , " char ", char , smallint
 Variable Length Data Types
 Integer data types
 Storing dates, times, and their intervals
 Data types for real numbers
 Snapshot
 Transaction
 Transaction Properties
 Transaction Isolation Levels
 Transaction Isolation Phenomena
 Example of serialization error
 Transaction Statuses (CLOG)
 Committing a transaction
 Subtransactions
 Types of locks
 Object locks
 Compatibility of locks
 Object locks
 Row locks
 Multitransactions
 Queue when row is locked
 Practice
2c Routine maintenance 117
 Autovacuum
 Performance pg_stat_progress_vacuum
 Parameters VACUUM commands
 Parameters VACUUM commands
 Parameter default_statistics_target
 Bloat tables and indexes
 Heap Optimization Only Tuple
 update monitoring
 Impact of FILLFACTOR on HOT cleanup
 In-page clearing in tables
 In-page cleaning in indexes
 Evolution of indexes: creation, deletion, rebuilding
 Partial indexes

 REINDEX Team
 REINDEX CONCURRENTLY
 HypoPG expansion
 Transaction counter
 Practice
2d Executing queries 136
 SQL is a declarative language
 Syntax parsing
 Semantic analysis
 Transformation (rewriting) of a query
 Execution planning (optimization)
 Executing a request
 EXPLAIN command
 EXPLAIN command parameters
 Tables
 Indexes for integrity constraints
 Methods of accessing data in a query plan
 String Access Methods
 Methods for joining sets of rows
 Cardinality and selectivity
 Cost of query plan
 Statistics
 pg_statistic table
 Cumulative statistics
 pg_stat_statements extension
 pg_stat_statements parameters
 Practice
2e Extensions 158
 PostgreSQL Extensibility
 Extension and library file directories
 Installing extensions
 Extension files
 Foreign Data Wrapper
 file_fdw extension
 dblink extension
 Practice
3 Configuring PostgreSQL 167
 Review
 Configuration parameters
 View parameters
 View parameters
 View parameters
 postgresql.conf parameter file
 Parameter file postgresql.auto.conf
 Applying parameter changes
 Privileges to change parameters
 Parameter Classification: Context
 Context parameters internal
 Classification of parameters: Levels
 Classification of parameters: Levels
 Table-level storage parameters
 Classification of parameters: Categories
 Category: "For developers"
 Category: "Custom Settings"
 Configuration parameter names and values
 Configuration parameter transaction_timeout
 Autonomous transactions
 View pg_stat_slru
 Configuration parameter transaction_buffers
 Parameters multixact_members_buffers And multixact_offsets_buffers
 Parameter configurations subtransaction_buffers
 Parameter configurations notify_buffers

 Setting parameters when creating a cluster
 Permissions for the PGDATA directory
 PostgreSQL data block size
 PostgreSQL Limitations
 enable_large_allocations parameter
 Limitations on the length of identifiers
 Configuration parameters
 Demonstration
 Practice
4a Logical structure 201
 Database cluster
 Instance
 Database
 List of databases
 Creating a database
 Changing database properties
 ALTER DATABASE command
 Deleting a database
 Schemas in the database
 Creating and modifying schemes
 Path for searching objects in schemes
 Special schemes
 Determining the current search path
 In which scheme will the object be created?
 Search path in SECURITY DEFINER routines
 Masking schema objects
 System catalog
 Common Cluster Objects
 Using the system catalog
 Accessing the system directory
 reg-types
 psql commands
 Database Inspector in Tantor Platform
 Demonstration
 Practice
4b Physical structure 227
 PGDATA Cluster File Directory
 PGDATA Cluster File Directory
 Temporary objects
 Tablespaces
 Tablespaces: Characteristics
 Tablespaces: Characteristics
 Tablespace Management Commands
 Changing tablespace directory
 Tablespace Parameters
 Working with log files
 The main data storage layer
 Additional layers
 Location of object files
 Tablespace and Database Sizes
 Sizing functions
 Moving objects
 Change of scheme and owner
 Reorganizing and moving tables with pg_repack utility
 Reducing the size of table files with the pgcompacttable utility
 TOAST (The Oversized-Attribute Storage Technique)
 TOAST (The Oversized-Attribute Storage Technique)
 Fields variable lengths

 Displacement fields in TOAST
 Field displacement algorithm in TOAST
 Toast chunk

 TOAST Limitations
 Parameters toast_tuple_target And default_toast_compression
 Columnar storage : general information
 Columnar Storage : Features use
 Columnar storage : parameters
 Demonstration
 Practice
5 Logging 261
 Diagnostic log
 Levels importance messages
 Location magazine
 Broadcast messages syslog
 Rotation files diagnostic magazine
 Diagnostic magazine
 Parameters diagnostics
 Tracking use temporary files
 Monitoring the operation of autovacuum and autoanalysis
 Monitoring checkpoints
 Description of log_checkpoints entries
 Description of log_checkpoints entries
 pg_waldump utility and log_checkpoints entries
 pg_waldump utility and log_checkpoints entries
 Connection logging
 log_connections parameter
 log_disconnections parameter
 pgaudit and pgaudittofile extensions
 pgaudit and pgaudittofile extensions
 Diagnostics of database connection frequency
 Diagnostics of blocking situations
 Practice
6 Security 284
 Users (roles) in a database cluster
 Users (roles)
 Attributes (parameters, properties) of roles
 INHERIT and GRANT WITH INHERIT attribute
 Switching a session to another role and changing roles
 Predefined (service) roles
 Rights to objects
 Viewing object permissions in psql
 DEFAULT PRIVILEGES
 Row-level protection security (RLS)
 Connecting to an instance
 pg_hba.conf file
 Contents of pg_hba.conf
 Contents of pg_hba.conf (continued)
 pg_ident.conf name mapping file
 Practice
7 a Physical backup 301
 Types of backups
 Incremental backups
 What is reserved?
 Recovery procedure
 Pre-Write Log Files
 LSN (Log Sequence Number)
 Log file names and LSNs
 Startup recovery process
 Functions for working with logs
 Cold backup
 Configuration parameter full_page_writes
 Backup utility pg_basebackup
 pg_verifybackup utility
 Magazine archive

 No loss (Durability)
 pg_receivewal utility
 Replication slot
 Create a basic backup
 wal-g backup utility
 Demonstration
 Practice
7b Logical backup 323
 Logical backup
 Examples of use
 Comparison of logical and physical redundancy
 COPY .. TO command
 COPY .. FROM command
 psql \ copy command
 pg_dump utility
 Parallel unloading
 pg_restore utility
 pg_restore capabilities
 pg_dumpall utility
 pg_dumpall capabilities
 Large size lines
 enable_large_allocations parameter
 Demonstration
8a Physical replication 339
 Physical replication
 Master and replica
 Replicas and archive of the magazine
 Setting up the wizard
 Creating a replica
 Replication slots
 Configuration parameters on replicas
 Hot replica
 Feedback to the master
 Horizon Monitoring
 Horizon Monitoring
 Parameters max_slot_wall_keep_size And transaction_timeout
 Master settings that should be synchronized with replicas
 Master-replica role reversal
 Promoting a replica to master
 Timeline History Files
 pg_rewind utility
 Replica instance processes
 Delayed replication
 Recovering damaged data blocks from a replica
 Demonstration
 Practice
 Practice
8b Logical replication 363
 Logical replication
 Using Logical Replication
 Physical and logical replication
 Identifying Strings
 Methods of string identification
 Steps to create logical replication
 Creating a publication
 Create a subscription
 Create a subscription
 Load per instance
 Getting log data from a replica
 Conflicts
 Bidirectional replication
 Demonstration

 Practice
9 Tantor Platform Review 379
 Use cases
 Monitoring tools
 Tantor Platform
 User settings
 Workspaces
 Instance review
 Patroni cluster
 Query Profiler
 Replication
 Tablespaces
 Notifications
 Monitoring configuration
 Analytics
 Background process activities
 Settings
 Data schema analysis
 Routine maintenance
 Task Scheduler
 Tantor Platform Course
10 Tantor Postgres 17 New Features 399
 Tantor Postgres - PostgreSQL branch
 Improvements in Tantor Postgres
 Additional configuration options
 Tantor Postgres SE and SE 1C Extensions
 Parameters optimizer requests
 Library pg_stat_advisor
 Parameters enable_temp_memory_catalog and enable_delayed_temp_file
 Parameter enable_large_allocations
 Algorithm compression pglz
 Parameter libpq_compression
 Parameter wal_sender_stop_when_crc_failed
 Parameter backtrace_on_internal_error
 uuid_v7 extension
 Extension pg_tde (Transparent Data Encryption)
 Validator oauth_base_validator
 Library credcheck
 Extensions fasttrun and online_analyze
 Extension mchar
 Extension full
 Extension orafce
 http extension
 Extension pg_store_plans
 Extension pg_variables
 Performance when using pg_variables
 Benefits of the pg_variables extension
 pg_stat_kcache extension
 Statistics collected by pg_stat_kcache
 pg_wait_sampling extension
 Waiting Event History
 pg_background extension
 pgaudit and pgaudittofile extensions
 pgaudit and pgaudittofile extensions
 pgcopydb utility
 pg_anon utility
 pg_configurator utility
 pg_diag_setup.py utility
 Utility pg_sec_check
 WAL-G (Write-Ahead Log Guard) utility
 Other extensions
 Practice

Copyright

The textbook, practical assignments, presentations (hereinafter referred to as documents) are intended for educational purposes.
The documents are protected by copyright and intellectual property laws.
You may copy and print documents for personal use for self-study purposes, as well as when studying at training centers and educational
institutions authorized by Tantor Labs LLC. Training centers and educational institutions authorized by Tantor Labs LLC may create training
courses based on the documents and use the documents in training programs with the written permission of Tantor Labs LLC .
You may not use the documents for paid training of employees or others without permission from Tantor Labs LLC . You may not license,
commercially use the documents in whole or in part without permission from Tantor Labs LLC .
For non-commercial use (presentations, reports, articles, books) of information from documents (text, images, commands), keep a link to the
documents.
The text of the documents cannot be changed in any way.
The information contained in the documents may be changed without prior notice and we do not guarantee its accuracy. If you find errors,
copyright infringement, please inform us about it.
Disclaimer for content, products and services of third parties:
Tantor Labs LLC and its affiliates are not responsible for and expressly disclaim any warranties of any kind, including loss of income, caused
by direct or indirect, special or incidental use of the document. Tantor Labs LLC and its affiliates are not responsible for any losses, costs or
damages arising from the use of the information contained in the document or the use of third-party links, products or services.

Copyright © 2025, Tantor Labs LLC

Author : Oleg Ivanov

! Created: 25 June 2025
For training questions, please contact: edu@tantorlabs.ru

10Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

PostgreSQL 17 Administration

Introduction

Preliminary preparation

To successfully complete the course, basic skills in working with Linux operating systems and basic
knowledge of the SQL language are sufficient: understanding of the SELECT, UPDATE, INSERT and
DELETE commands. Operating system skills include: the ability to launch a terminal, view the contents
of directories and files in the terminal, copy and edit text files using the ls, cp, mv, cat, vi commands;
understand and change file permissions (ls -al, chmod, chown commands).
The course will cover the main tasks of administering PostgreSQL family databases using the example

of the Tantor Postgres DBMS and the specifics of operating the Tantor Postgres DBMS.
To successfully complete the course, it is recommended to listen to the instructor, ask questions if

they arise, read the text of practical assignments and complete them independently. When completing
practical assignments, it is recommended to type commands on the keyboard, rather than copy them
into the terminal from the text of the assignments. Manually entering commands, correcting typos that
occur when typing commands, studying errors issued for incorrect commands allows you to better
remember the commands and the meaning of their use. The feeling of "understanding" the text of the
assignments is not enough; in real work, it is important to remember the main keywords and capabilities
of the commands in order to quickly find the full syntax. Copying commands can be used if you are
familiar with them.

11Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Introduction to SQL
• Skills in working in the Linux operating system
• Experience with any relational database is recommended.

• PostgreSQL Database Administrators
• Database Application Developers
• Technical support staff

Preliminary preparation

Target audience

Course materials

The course materials include:
1) A textbook in the form of a book in pdf format, which contains the theoretical part of the course.
2) Practical tasks in the form of a book in pdf format.
3) A virtual machine with the Astra Linux 1.8 operating system and Tantor Postgres DBMS version 17.5

installed . Access to the virtual machine for the duration of the course or an image in ova format may be
provided. The virtual machine image can be used with Oracle VirtualBox version 6.1 and higher.

12Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• A textbook in the form of a book in pdf format, which contains
the theoretical part of the course

• Practical tasks
• virtual machine for performing practical tasks

Course materials

Course Sections

Installation and management of DBMS
Installation
Managing a Database Cluster Instance
Database Cluster Management Utilities
psql utility
Architecture
General information and memory structures
Multiversion
Routine maintenance work
Executing queries
Extensibility
Configuration
Databases
Logical and Physical implementation
Diagnostic log
Safety
Connection and authentication
Backup
Physical and logical redundancy
Replication
Physical and logical
Tantor Platform, Overview of Features
What's New in Tantor Postgres Version 17.5

13Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

0. Introduction
1. Installation and management of DBMS
2. Architecture (5 parts)
3. Configuration
4. Databases (2 parts)
5. Journaling
6. Security
7. Backup (2 parts)
8. Replication (2 parts)
9. Tantor Platform, Overview of Features
10. New Features of Tantor Postgres 17.5

Course Sections

About the course

The course is designed for full-time or distance learning with an instructor. The course consists of a
theoretical part - chapters, practical exercises and breaks. Breaks are combined with practical
exercises that students perform independently on a virtual machine prepared for the course.
Approximate schedule:
1) starts at 10:00
2) Lunch break 13:00-14:00. The start of lunch may be shifted by half an hour in the range from 12:30

to 13:30, as it usually coincides with the break between chapters.
3) the theoretical part ends before 17:00 (on the last day of the course before 15:00).
The course consists of a theoretical part (chapters) and practical assignments. The duration of the

chapters is approximately 20-40 minutes. The exact time of the beginning of the chapters and the time
for practical assignments is determined by the instructor. The duration of the exercises may vary
among different students and this does not affect the effectiveness of assimilation of the course
material. You can complete the exercises during breaks between chapters or at the end of each day.
The order of the chapters and exercises does not affect the effectiveness of assimilation of the course
material. The completion of assignments is not checked. To successfully assimilate the course material,
it is enough to:
1) listen to the instructor, looking through the text on the slides and under the slide as the instructor

delivers the message
2) ask the instructor questions if internal disagreement arises (questions arise)
3) complete practical tasks and read the text in practical tasks
The course materials include:
1) textbook in pdf format
2) practical tasks in pdf format
3) virtual machine image in ova format

14Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• In-person or distance learning with an instructor:
› duration 5 days
› starts at 10:00
› lunch break 13:00-14:00
› end before 17:00 (last day before 15:00)

About the course

About Tantor

Since 2016, the Tantor team has worked in the international PostgreSQL DBMS support market and
served clients from Europe, North and South America, and the Middle East. The Tantor team developed
the Tantor Platform software and subsequently created the Tantor Postgres DBMS, based on the
program code of the freely distributed PostgreSQL DBMS.
In 2021, the company completely reoriented itself to the Russian market, where it concentrated its

main activities on the design and development of the Tantor Postgres DBMS , as well as the
development of the Tantor Platform - a tool for managing and monitoring databases based on
PostgreSQL.
The design and development of products is based on many years of accumulated experience in the

operation of high-load software systems in the public and private sectors.
At the end of 2022, the company joined the Astra Group.

15Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• since 2016 on the international market
• since 2021 on the Russian market
• development of Tantor Postgres DBMS
• development of the Tantor Platform for monitoring and

managing PostgreSQL family DBMS, as well as Patroni
clusters

• many years of experience in operating high-load systems
• is part of the Astra Group

About Tantor Labs

Tantor Postgres RDBMS

Tantor Postgres RDBMS is a relational database of the PostgreSQL family with increased performance
and stability. It is released in several editions (assemblies): BE, SE, SE 1C, Certified . Special Edition for
the most loaded OLTP systems and data warehouses up to 100 TB. Special Edition 1C for 1C
applications.
Technical support, assistance in building architectural solutions, and migration from DBMSs of other

manufacturers are available for all editions. Tantor Labs software is included in the "Unified Register of
Russian Programs for Electronic Computers and Databases". When purchasing Tantor Postgres, a
license for the Tantor Platform is provided for managing the acquired DBMSs.

16Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Tantor Postgres
Tantor SE 1C

DBMS for high loads,
optimized

and approved for working
with 1C applications

Tantor SETantor BE

Enterprise-level DBMS,
suitable for the most loaded
OLTP systems or KHDs up to

100 TB in size

New features and
improvements compared to

PostgreSQL,
technical support

As part of
Tantor xData

Maximum version of DBMS,
optimized for working with 1C

Tantor
PipelineDB

An extension that allows
continuous data processing

Tantor xData

The Tantor XData appliance delivers high-scale, mission-critical workloads with high performance and
availability. Consolidating multiple Tantor Postgres SE workloads on an XData database engine in
enterprise data centers helps organizations improve operational efficiency, reduce administration, and
lower costs.
The hardware and software complex (HSC) Tantor XData is designed for migration from foreign

manufacturers' systems and provides similar load capacity. It is a replacement for high-load DBMSs up
to ~50 TB per instance, servicing OLTP-type loads, running on hardware and software complexes from
foreign manufacturers. For DBMSs servicing data warehouses up to ~120 TB per instance.
It is a replacement for heavy ERP from 1C when migrating from DBMS of foreign manufacturers.

Allows consolidation of several DBMS in one PAC. Can be used when migrating from SAP to 1C:ERP.
Designed for creating cloud platforms.
An advantage of using xData is the presence of a convenient graphical system for monitoring the

operation of the DBMS: the Tantor Platform.
Since 2025, the second version of the PAK has been produced:
xData 2 A - on AMD EPYC and x86-64 processors based on Yadro servers.
xData 2 B - on Baikal-S processors manufactured by Baikal Electronics (Astra Group).

17Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Hardware and software complex with
high performance, fault tolerance,
security

• version 2A - AMD EPYC and x86-64
processors

• version 2B - Baikal-S processors
• high performance and scalability
• reducing infrastructure and

administration costs
• includes Tantor Postgres DBMS and

Tantor Platform

Tantor xData

Tantor Platform

The Tantor platform is software for managing the Tantor Postgres DBMS, PostgreSQL forks, and
Patroni clusters. It allows you to conveniently manage a large number of DBMS. It belongs to the class
of software products that includes Oracle Enterprise Manager Cloud Control.
Benefits of using the Tantor Platform:

1. Collection of PostgreSQL instance performance indicators, storage and processing of indicators,
recommendations for performance tuning
2. Intuitive and functional graphical interface allows you to focus on PostgreSQL instance performance
indicators
3. Automates routine tasks, increasing work efficiency and reducing the likelihood of errors
4. Manages not only the Tantor Postgres DBMS, but also other DBMSs of the PostgreSQL family
5. Integration with mail systems, directory services, messengers
6. Simple implementation: deployment and introduction of the DBMS under maintenance by the Tantor
Platform using Ansible.

Tantor DLH Platform

Tantor Labs releases the Tantor DLH Platform - software that allows you to organize the process of
transformation and loading data using the Extract Transform Load or Extract Load Transform logic in
the Tantor Postgres DBMS for organizing data warehouses and data marts. Belongs to the class of
software products that includes Oracle Data Integrator.

18Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Tantor Platform

• software for managing a large number
of DBMS and Patroni clusters

• manages Tantor Postgres DBMS and
PostgreSQL forks

• performance tuning recommendations

• integration with mail systems, directory
services, messengers

Tantor Platform

Master
(DBMS)

Replica
(DBMS)

Agent Agent

Le
ad

in
g

S
la

ve

Platform

Tantor PipelineDB Extension

Tantor PipelineDB is an extension for the Tantor Postgres and PostgreSQL DBMS (free Apache 2.0
license), unlike the limited license of the timescaleDB extension. Allows continuous processing of
streaming data with incremental saving of results in tables. Data is processed in real time using only
SQL queries. It has a large set of analytical functions that work with constantly updated data. Allows
you to connect streaming data with historical data for comparison in real time. Eliminates the need to
use traditional ETL (Extract, Transform, Load) logic with CDC (Change Data Capture). The essence of
the extension is described below for those familiar with the term "CDC".
Tantor PipelineDB adds support for continuous views. Continuous views are high-refresh materialized

views that are incrementally updated in real-time.
Querying continuous views instantly returns up-to-date results, making TantorPipelineDB suitable for

applications where immediate response is important .
Examples of creating continuous views:
Continuous view for providing analytical data for the last five minutes :
CREATE VIEW imps WITH (action=materialize, sw = ' 5 minutes ')
AS SELECT count(*), avg(n), max(n) FROM imps_stream;
By default, the action=materialize parameter , so the action parameter can be omitted

when creating continuous views.
Continuous representation for outputting ninetieth, ninety-fifth, ninety-ninth percentiles response time

:
CREATE VIEW latency AS
SELECT percentile_cont(array[90, 95, 99])
WITHIN GROUP (ORDER BY latency::integer)
FROM latency_stream;

Continuous view to display daily traffic used by top ten IP addresses :
CREATE VIEW heavy_hitters AS
SELECT day(arrival_timestamp) , topk_agg (ip, 10 , response_size)
FROM requests_stream GROUP BY day ;
https://tantorlabs.ru/products/pipelinedb

19Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• extension for open source Tantor Postgres and PostgreSQL DBMS for
continuous execution of SQL queries on data streams with incremental
saving of results in regular tables

• high performance time series aggregation
• Allows you to connect streaming data with historical data for real-time

comparison
• can be used in applications where immediate response is required
• example of a continuous view to display daily traffic used by the top ten

IP addresses :

Tantor PipelineDB Extension

CREATE VIEW heavy_hitters AS
SELECT day(arrival_timestamp) , topk_agg (ip, 10 , response_size)
FROM requests_stream GROUP BY day

PostgreSQL Extensions Rework

Tantor Labs employees develop and create extensions for the PostgreSQL DBMS.
Extension repositories: https://github.com/orgs/TantorLabs
List of extensions:
1. pg_cluster
2. pg_anon
3. pg_perfbench MIT License
4. ansible_tantor_agent MIT License
5. pg_configurator MIT License
6. pg_store_plans
7. ldap2pg PostgreSQL License
8. citus GNU Affero General Public License v3.0
9. wal-g Apache License, Version 2.0 (lzo - GPL 3.0+)
10. odyssey BSD 3-Clause "New" or "Revised" License
11. plantuner
12. pg_orchestrator MIT License
13. pgtools
14. pipelinedb Apache License 2.0

20Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• 1. pg_cluster
• 2. pg_anon
• 3. pg_perfbench
• 4. ansible_tantor_agent
• 5. pg_configurator
• 6. pg_store_plans
• 7.ldap2pg
• 8. citus
• 9. wal-g
• 10. odyssey
• 11. plant
• 12. pg_orchestrator
• 13. pgtools
• 14. pipelinedb

PostgreSQL Extensions Rework

PGBootCamp Conferences

Tantor Labs is an active participant in organizing PostgreSQL community conferences as part of the
global PG BootCamp initiative.
Participation in the conference is free and possible online and offline: https://pgbootcamp.ru/
You can become a speaker at a conference.
Conference papers are openly available: https://github.com/PGBootCamp
Performances https://www.youtube.com/@PGBootCampRussia
The PGBootCamp conference was held:
Yekaterinburg April 10, 2025
Kazan September 17, 2024
Minsk April 16, 2024
Moscow October 5, 2023

21Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Labs takes part in organizing conferences
• The PGBootCamp conference was held:

› Yekaterinburg April 10, 2025
› Kazan September 17, 2024
› Minsk April 16, 2024
› Moscow October 5, 2023

PGBootCamp Conferences

22Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Installation

1a

Prerequisites

Tantor Postgres is supplied in compiled form as packages for the operating system package manager.
Before installation, you need to check the list of operating systems and their versions for which the
Tantor Postgres DBMS is released. The list of supported operating systems includes:
Operating systems with RedHat Packet Manager (rpm)
Redos 7.3
AltLinux c9f2 (P8), p10
Centos 7
MSVSphere
Oracle Linux 8
Rocky 8, 9
Operating systems with Debian package manager (deb)
Astra Linux Common Edition 2.12
Astra Linux Special Edition 4.7, 1.7, 1.8
Ubuntu 18, 20, 22
Debian 10, 11, 12.
Installation on other operating systems is not supported.
Equipment:
Number of CPU cores: at least 4;
RAM: at least 4GB;
Free disk space: at least 40GB (plus space for user data that you plan to store). Using SSD is

recommended.
https://docs.tantorlabs.ru/tdb/en/17_5/se/install-binaries.html

23Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

For installation you will need:
• supported operating system

› Astra Linux operating system is recommended
› 10 operating systems supported

• Minimum hardware requirements:
› 4 CPU cores, 4GB RAM, 40GB SSD

Prerequisites

Checking the possibility of installation

Programs use shared libraries that provide useful functionality and were used when building them. If the libraries
are not installed in the operating system, errors may occur during operation, the cause of which will be difficult to
determine. Distributions list the libraries whose functionality utilities and processes can access. Such packages
are called required and are related to dependencies. Dependencies may include not only packages, but also the
needs of command files called during installation and other tools.
Since the list of dependencies may differ between different versions and builds of PostgreSQL, the
documentation does not list the required libraries or packages.
In practice, getting a list of packages that need to be installed is a pressing task.
To get a complete list of dependencies for a specific distribution, you can use the commands:
For Debian package manager: dpkg -I tantor*.deb
For RedHat package manager: rpm -qp --requires tantor-se-server-*.x86_64.rpm
The utility's response consists of a list of packages and, possibly, versions of packages and libraries. For
example:
shadow-utils
grep
...
rpmlib(PayloadIsXz) <= 5.2-1
<= and => symbols indicate that specific library versions are required. The last line of the example specifies the
package manager version restrictions, which set the rpm package manager compatibility check to protect against
installation on an incompatible operating system version.
This check can be useful for creating a task for installing an operating system. The command can be run on any
Linux operating system where the rpm package manager is installed.
To check that dependencies are met before installation, you can use the command:
rpm -i --test tantor*.rpm
Example of error when checking dependencies of Rocky 9 distribution on Oracle Linux 7.
warning: tantor-be-server-17-17.5.1.el9.x86_64.rpm: Header V4 RSA/SHA512 Signature
error: Failed dependencies:
...
python3-libs is needed by tantor-be-server-17-17.5.1-0.x86_64
rpmlib (PayloadIsZstd) <= 5.4.18-1 is needed by tantor-be-server-17-17.5.1-0.x86_64
Errors related to rpmlib indicate an unsuitable distribution.

24Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Distributions are distributed as a file for Red Hat (rpm) and
Debian (deb) package managers.

• The distributions indicate the packages whose functionality
can be accessed by utilities and processes of the cluster
instance.

• The documentation does not list dependencies, as it differs
for different versions and builds.

• Before installation you can get a list of packages that require
installation

Checking the possibility of installation

Installer

To simplify the installation, Tantor Postgres can be installed using the installer. The installer is downloaded using
the command:
wget https:// public.tantorlabs.ru /db_installer.sh
Once the download is complete, you can change the file system permissions so that the installer script can run:
chmod +x db_installer.sh

The distribution can be downloaded from your personal account https://lk.astra.ru/iso-images and specify the
path to the downloaded file to the installer using the --from -file parameter :
./db_installer.sh --from-file =./tantor-se-server-17_17.5.0_amd64.deb
The installer can download the distribution from the Tantor Labs repository. To do this, you need to set the

environment variable NEXUS_URL :
su -
export NEXUS_URL="nexus-public.tantorlabs.ru"
apt update
./db_installer.sh --edition= be
To download commercial versions, you need to set environment variables:
su -
export NEXUS_URL="nexus.tantorlabs.ru"
export NEXUS_USER="name"
export NEXUS_USER_PASSWORD="password"
apt update
./db_installer.sh --edition= se
Possible errors:
1) Conflicts. For example, the client (tantor-se-client-17_17.4.0_amd64.deb) was installed, and the package with

tantor-se-server-17 includes the tantor-se-client-17 libraries. In this case, the installer will return an error and a
command to fix it by uninstalling the package with which the conflict was detected:
E: Unmet dependencies. Try 'apt --fix-broken install' with no packages (or specify a
solution).

After running apt --fix-broken install , the utility will ask for confirmation to uninstall the package.
2) The installer creates the file /etc/apt/sources.list.d/tantorlabs.list or
/etc/yum.repos.d/tantorlabs.repo and subsequently it will be possible not to set environment variables. If
there is an authentication error or you want not to authenticate, you will need to delete the specified files.
Authentication data for downloading the distribution only allows you to download commercial distributions and
saving it in the tantorlabs.list file is not considered a security breach.

3) There are files with addresses of non-existent repositories in the /etc/apt/sources.list.d/ directory
. You need to delete such files.

Note: The apt update command updates the contents of /var/lib/apt/lists/ by downloading and
expanding archives containing packages contained in the repositories.

25Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• checks for possible library conflicts and suggests a
command to resolve them

• adds repository address to apt and yum list
• downloads the appropriate distribution and performs

installation, cluster creation, service creation
• is a text script:

› You can see what actions the installer performs
› it's easy to figure out what the errors are and fix them

Installer

Local installation

Tantor Postgres Basic Edition (BE) is available for evaluation use. To install Tantor Postgres BE, you
only need to set one environment variable:
export NEXUS_URL="nexus-public.tantorlabs.ru"
Update package lists from repositories:
apt update
Run the installer, specifying the desired parameters:
./db_installer.sh --edition=be --major-version=16 --do-initdb
You can specify the main version and whether to create a cluster after installation. You can also create

a cluster after installation using the initdb utility .
The installer allows you to install any Tantor Postgres DBMS builds from package files. This can be

useful if the host does not have Internet access.
Before you begin the installation, make sure you have downloaded the correct binary package that is

compatible with your operating system and architecture. The file should have the extension .deb for
Debian-based systems, .rpm for Red Hat-based systems.
To start the installation, go to the directory where the downloaded file is located. Make sure that the

installation script db_installer.sh is present and has the necessary execution rights. Local installation is
performed by the command:
./db_installer.sh --do-initdb --edition= se --major-version= 17 --from-file= ./
tantor- se -server- 17 _5.0_amd64.deb
You need to specify the major version with the --major-version=17 parameter and it must

match the version (usually present in the package file name), otherwise the installer may create a
directory with an incorrect version number.
You can also install the package without using the installation script, but using the operating system's

package manager:
rpm -i tantor*.rpm or dpkg -i tantor*.deb
In this case, the cluster will not be created and can be created later using the initdb utility. In fact, the

installer can be useful for local installation because it can perform additional actions. The disadvantage
may be that the program code (a wrapper over the package manager) can add errors. For example, it
may not provide for all possible features of the operating system configuration.

26Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Installer parameters ./db_installer.sh --help
• During installation you can create a cluster
• distributions (rpm and deb packages) have a standard

format, they can be unzipped, find out what changes are
made to the operating system during the installation process

Local installation

Installation process
During installation:

1)a user is created or modified for the Tantor Postgres DBMS, under which processes will be launched and which
will be the owner of directories related to database clusters. Example of a command to create a user and the
name postgres:
2)useradd -r -g postgres -c "Tantor database server" -d /var/lib/postgresql -s /bin/bash
postgres
There is no need to change the postgres username to another one for security reasons.
3)The directory /opt/tantor/db/17 is created , which contains the executable and auxiliary files of Tantor
Postgres.
4)The service descriptor file /usr/lib/systemd/system/tantor-se-server-17.service is created so
that an instance servicing the database cluster can be launched. The database cluster is a directory in the file
system of the host (synonyms: computer, node, server) on which the Tantor Postgres software has been
installed. DBMS clients do not have direct access to the files. In order for client programs to be able to "work with
the DBMS" (send commands in SQL, receive data), a set of processes must be launched on the host that will read
and write to the cluster directory and maintain a connection ("socket") with the client program. Such a set of
processes and the memory they use in the host operating system are called an "instance" or an instance of the
database cluster. The
service status can be checked using the command
systemctl status tantor-se-server-17
5)the file /etc/ld.so.conf.d/tantor-se-17.conf is created. You can view the list of shared libraries
loaded into the /etc/ld.so.cache cache using the command ldconfig -p | grep tantor. You can
check that
the LD_PRELOAD environment variable does not contain libraries that can overlap the PostreSQL libraries, since
LD_PRELOAD prevails.
6)the directory /var/run/postgresql and the file /usr/lib/tmpfiles.d/tantor-db.conf are created
. The file is used by the standard temporary file cleaning service. The directory is the default directory for the
Tantor Postgres Unix socket files (configuration parameter (unix_socket_directories). In older versions of
PostgreSQL, the directory " /tmp " was used, which, by inertia, may be mentioned in documentation and
manuals.
You can check that the directory /usr/lib/tmpfiles.d does not contain other files that could remain from
previous installations of postgresql, in which the same directory was specified, but with different parameters
systemctl status systemd-tmpfiles-*
systemd-tmpfiles[]: /usr/lib/tmpfiles.d/tantor-db.conf:1: Duplicate line for path
"/run/postgresql", ignoring
7)the directory /var/lib/postgresql/tantor -se -17/data is created
, this is the default directory for cluster files. Tantor Postgres utilities learn about the location of the cluster
directory either by the -D switch (utility parameter), or from the PGDATA environment variable. Therefore, in
spoken language this directory is called " PGDATA ".
8)export PATH=$PATH
export PATH=/opt/tantor/db/17/bin:$PATH
are added
to the end of the file /var/lib/postgresql/.bash_profile so that when logged in as the postgres user, you
can run the database cluster management utilities without specifying the path to them.

27Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• a user named postgres is created
• Cluster Launcher Service is being created
• directories and files are created
• the required permissions are set on directories,

files and their owners

Installation process

After installation

PostgreSQL has no limit on the number of instances that can be run on a single node. However,
production database servers are usually heavily loaded and do not typically run multiple instances of a
database cluster on a single node. Multiple instances on a single node may be run temporarily during
migration to a new version.
Some PostgreSQL package distributions contain the pg_controlcluster, pg_createcluster
utilities , which are wrappers for the standard pg_ctl, initdb utilities . The developers of
such distributions assume that this simplifies working with several clusters on one node. Tantor
Postgres does not use these utilities. Cloud distributions, where the work of a large number of
instances is required, can use other assemblies (synonym for forks) of PostgreSQL.
After installation, you can do the following:

1)Set the environment variable in the file
/var/lib/postgresql/.bash_profile
export PGDATA=/var/lib/postgresql/tantor-se-17/data
this will simplify the launch of the cluster management utilities that we will look at later pg_ctl,
pg_controldata, pg_backup and others - they will not need to specify the launch parameter -D
path_to_PGDATA .
2)create a cluster if it has not been created yet
3)start cluster systemctl start tantor-se-server-17
4)If automatic instance startup was disabled (enabled by default), then enable: systemctl enable
tantor-se-server-17
5)The Tantor Postgres version can be found using the tantor_version() function
6)set initial values of cluster parameters using https://tantorlabs.ru/pgconfigurator
7)configure cluster management and monitoring tools Tantor Platform, dBeaver.
8)uninstallation (e.g. of a previous version) is performed by the package manager. For Debian-based
systems, apt-get remove tantor-se-server-17
https://docs.tantorlabs.ru/tdb/en/17_5/se/binary-download-execute.html

28Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Set the PGDATA environment variable in the
postgres user profile

• create a cluster if it has not been created yet
• start a cluster instance
• set initial values of cluster parameters using

https://tantorlabs.ru/pgconfigurator
• install management and monitoring tools

(Tantor Platform)

After installation

Configurators

The database cluster is created by the initdb utility. The utility creates a postgresql.conf file with
default values. These values are designed to support a not very loaded application so that the DBMS
can be used on a desktop by an ordinary developer. In Tantor Postgres, the initdb utility does not
change the parameter values compared to PostgreSQL's initdb. It is assumed that the parameters for
industrial use will be configured separately.
For initial setup, you can use the pg_configurator utility created and supported by Tantor Labs. The

utility is available on the website https://tantorlabs.ru/pgconfigurator/ shell in the form of a command
line utility https://github.com/TantorLabs/pg_configurator
The utility accepts 7 or ~20 parameters and makes recommendations based on them.
There are not many initial configuration utilities. Of the known ones:
1. PGconfigurator www.cybertec-postgresql.com, web version pgconfigurator.cybertec.at makes

recommendations based on 13 parameters
2. PGСonfig https://github.com/pgconfig/api, web version www.pgconfig.org gives recommendations

based on 8 parameters
3. PGTune github.com/le0pard/pgtune, created by 2ndQuadrant employee, web version

pgtune.leopard.in.ua gives recommendations based on 7 parameters
During the operation of the DBMS, the Tantor Platform configurator can recommend configuration

parameters. The Platform configurator makes recommendations based on ~25 parameters.
https://tantorlabs.ru/pgconfigurator
Setting up PostgreSQL to work with 1C products:
https://wiki.astralinux.ru/tandocs/nastrojka-postgresql-tantor-dlya-raboty-1s-294394904.html
Next, we consider the parameters whose values are set first. The configurator provides initial values. It

is important to understand the meaning of the parameters and what they affect.

29Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Configurators

• pg_configurator utility
• web version

http://tantorlabs.ru/pgc
onfigurator

• host and planned load
characteristics are
entered

• gives configuration
parameters

Creating a cluster using the initdb utility

The cluster is created by the command line utility initdb . The utility can be called by the installer.
initdb is run under the postgres operating system user.
Before running the utility, you need to create a directory where the files of the created PGDATA cluster will be located, set

permissions and ownership rights for this directory and the directories in which it is located for the postgres user. When
starting the instance, permissions for the PGDATA directory itself are checked :
1)permissions should be 0700 (drwx --- ---) or 0750 (drwx rx ---)
2)The owner must be the postgres user.

When creating a cluster, you need to select localization settings that cannot be changed after the cluster is created (for
databases created when creating a cluster postgres template0 template1), but can be selected for databases created
after the cluster is created:
1)LC_COLLATE text sorting rules
2)LC_CTYPE character classification (uppercase letters, lowercase letters, digit characters, and other character classes)
LOCALE character encoding scheme - the third part of the value after the dot. This part must be UTF8 or one of the Cyrillic-

supporting encodings. Not all combinations are available and can be selected for single-byte encodings. You can select
ru_RU.iso88595 since it is available in operating systems supported by PostgreSQL.

Localization parameters can be set in initdb parameters --locale=en_US.UTF8 --lc-collate=en_US.UTF8 --lc-
ctype= en_US.UTF8 --locale-provider={libc|icu} --encoding=UTF8

If you do not specify parameters, environment variables are used. You can get a list of them with the locale command. The
list of valid combinations is locale -a . Configure dpkg-reconfigure locales . libc is the standard provider. It makes
sense to specify the --encoding parameter if the LOCALE value does not contain an encoding (after the dot) and there are
several valid (compatible) options.

When choosing between UTF8 and iso88595 (or cp1251), you can take into account that in UTF8, Cyrillic characters take
up more space - two bytes instead of one. However, applications may need to store, for example, a client's last name in their
national language. About the single-byte koi8 encoding: it should not be used because the binary comparison of characters
does not correspond to the linguistic one.

Parameters to pay attention to:
•-k -g explicitly enable checksums for data blocks (for WAL records they are enabled) and set less restrictive permissions on
created files and directories 0 755 (zero means it is an octal number).
•--auth --auth-host --auth-local
•-D path to PGDATA
• --wal-segsize number in megabytes. Default is 16MB. The value must be a power of two. This parameter can be changed
after cluster creation using pg_resetwal utility --wal-segsize=new_size
Specifies the size of the write-ahead log file (synonyms WAL file, WAL segment). It is changed either because of a large
number of files in one directory, or because the maximum size of the log buffer in shared memory (wal_buffers) is limited by
the size of the WAL file. The effect of the WAL buffer size on performance is nonlinear.

30Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The cluster is created using the initdb
command line utility.

• initdb is run under the operating system user
postgres

• Before running the utility, you need to create a
directory for the cluster files

• select localization settings
• see other utility options

Creating a cluster using the initdb utility

31Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Control

1b

pg_ctl instance management utility

pg_ctl is an instance management utility. The advantage of the utility is its simplicity and ease of use
via the command line. Integration with system tools: pg_ctl can be easily integrated with system tools
and automation scripts, making it a useful tool for automating the management of the PostgreSQL
database server. pg_ctl provides a powerful and flexible way to manage the PostgreSQL database
server, making it one of the essential tools for PostgreSQL administration.
When providing or receiving technical support, it allows you to accurately execute short commands

and receive the results of their execution, which can be given via instant messengers in the form of text
messages. This is one of the advantages of console utilities compared to graphical ones.
The main commands that can be used with pg_ctl are:
start - launching an instance
stop -m smart | fast | immediate - stop
Before stopping the industrial cluster, it is recommended to perform a checkpoint, i.e. issue the

checkpoint command. This reduces the time for stopping.
restart - restart, equivalent to stop and start, so the parameters that are set when stopping can be

used.
reload - reloads configuration files without stopping the instance
status - displays the status of the instance
To start an instance, you need to specify the cluster directory - PGDATA . This can be done by setting

the environment variable before starting pg_ctl or by specifying the path to the directory in the -D
parameter.

32Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Main actions: stop, reread configuration files,
check instance status, and possibly start
instance

• the advantage is the ease of use and getting
the result of the command execution

• runs under the postgres user

pg_ctl instance management utility

postgres process

pg_ctl starts the postgres process , which forks the other processes in the instance and listens
for incoming connections. The postgres process has parameters that pg_ctl can pass to it . In
older versions of PostgreSQL, the postgres process was called postmaster.
To pass configuration parameters from pg_ctl to postgres, use the -o parameter . For example,
pg_ctl start -o "-- config_file=./postgresql.conf -- work_mem=8MB "
you can also use the syntax
pg_ctl start -o "-c config_file=./postgresql.conf -c work_mem=8MB "
See the list of parameters that can be passed to postgres:
postgres --help
The --single option starts the postgres process in single-user, single-process mode:
postgres --single
PostgreSQL stand-alone backend 17.5
backend> vacuum full
To exit this mode, use the key combination <ctrl+d> .
This is not psql, there are no psql commands in this mode, only commands that the server process

(synonym backend) can accept.
Parameter --single cannot be passed via pg_ctl , since there is no interprocess communication.
In this mode, there is no interprocess communication and memory locks. Thanks to this, commands

are executed faster. This mode is used in rare cases for commands that correct the contents of the
cluster, for example vacuum full .

33Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_ctl starts the postgres process, which spawns the rest
of the instance processes

• -o parameter of the pg_ctl utility can be used to pass
command line parameters and cluster configurations to the
postgres process

• postgres --single allows using single-user and single-
process mode. This mode is used to fix the cluster contents
in complex cases of corruption.

• To exit single-user mode, use the key combination ctrl+d

postgres process

Managing an instance via systemctl

In the Linux operating systems supported by Tantor Postgres, systemd is used to start services.
Tantor Postgres is compiled with the --with-systemd option , which provides support for all
systemd functionality. The distribution comes with a service description file
/usr/lib/systemd/system/tantor-se-server-17.service , and the administrator does not need
to create it. By default, Type=forking is used .
By default, a timeout of 5 minutes is set by the TimeoutSec=300 parameter in this file.
systemd will kill the instance if it does not start within this time . On production servers, recovering

from a crash using logs can take a significant amount of time. The infinity value is recommended
in such cases and disables the timeout logic.
While the server is running, its PID is stored in the postmaster.pid file in PGDATA. This is used to

prevent multiple instances of the server from running in the same data directory and can also be used
to shut down the server.
If the instance processes are terminated and the postmaster.pid file prevents the instance from

starting, the postmaster.pid file can be deleted .
systemctl is the main command for working with systemd . By default, it runs with root user
rights .
Launching an instance:
systemctl start tantor-se-server-17.service
The suffix " .service " can be omitted, as it is used by default.

If the systemctl utility produces an error when running an instance:
Starting Tantor Special Edition database server 17...
pg_ctl: another server might be running; trying to start server anyway
lock file "postmaster.pid" already exists
HINT: Is another postmaster running in data directory
"/var/lib/postgresql/tantor-se-16/data"?
pg_ctl: could not start server
This may mean that the instance is not started via systemd , but by the pg_ctl utility, and systemd

cannot start or stop the instance because it was started by the pg_ctl utility. You can check the list of
processes in the operating system. systemd uses the pg_ctl utility for starting/stopping and other
actions.
The systemctl stop tantor-se-server-17 command in this case cannot stop the instance, it does not

produce a result and may create the false impression that the instance is terminated.
You can check whether the instance has been added to autorun using the command
systemctl is-enabled tantor-se-server-17
The parent process has PID=1:
postgres@tantor:~$ ps -ef | grep init
root 1 0 0 /sbin/init splash

34Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• manages only instances launched by it, an instance launched
by pg_ctl is not managed by the systemctl utility

• systemctl uses pg_ctl to start the instance
• waits for instance to start for 300 seconds (
TimeoutSec=300 parameter in service descriptor file)

• Launching an instance:
› systemctl start tantor-se-server-17
› systemctl start tantor-se-1c-server-17
› systemctl start tantor-be-server-17

Managing an instance via systemctl

Working in a docker container

The process ID (PID) of the postmaster in the container must not be equal to one (1). The process with
PID=1 is the first user process that is started after the Linux kernel is initialized. The process with PID 1
spawns (starts) all other processes. It is the parent of all other processes that it spawns. All processes
must have a parent process. Process 1 has a property: if the parent process of any process dies, the
kernel automatically assigns process 1 as the parent of the orphaned process. Process 1 must adopt all
orphans.
The postgres process monitors the state of its child processes and receives an exit status when any

child process terminates. The normal behavior of the postmaster if a child process terminates with a
status other than 0 (normal termination) is to restart the instance. In addition to breaking sessions, the
instance will be unavailable while the wal log is being restored.
In a Docker container, process 1 is the process that is started to run the container. The postgres

process should not have PID= 1 :
root@tantor:~# docker exec -it container /usr/bin/ps -ef
PID USER TIME COMMAND
1 postgres 0:38 postgres

To use tini to start an instance in a container, you need to use the --init parameter .
Modifiable files, in particular PGDATA, must be located on volumes , otherwise the data will be lost

when the container is deleted. Example of creating and running a container:
sudo docker pull postgres
sudo docker run -d --init -e POSTGRES_USER=postgres -e
POSTGRES_PASSWORD=postgres -e POSTGRES_INITDB_ARGS="--data-checksums" -e
POSTGRES_HOST_AUTH_METHOD=trust -p 5434:5434 -e PGDATA=/var/lib/postgresql/data -
d -v /root/data :/var/lib/postgresql/data --name postgres postgres
Running an instance in a container does not add high availability.
Running an instance in a container provides greater performance than running it in a virtual machine.

35Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Modifiable files, in particular PGDATA, must be located on volumes
• running in a container does not add high availability
• the postgres process should not have PID=1
• when creating and running a container, you need to use the docker
run -d --init parameter

Working in a docker container

root@tantor:~# docker exec container_name ps
PID USER TIME COMMAND
1 postgres 0:38 postgres

31 postgres 0:09 postgres: logger
32 postgres 0:45 postgres: checkpointer
33 postgres 0:38 postgres: background writer
...
root@tantor:~# docker rm -f container_name
root@tantor:~# docker run --init -d -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -e
POSTGRES_INITDB_ARGS="--data-checksums" -e POSTGRES_HOST_AUTH_METHOD=trust -p 5434:5434 -e
PGDATA=/var/lib/postgresql/data -v /root/data:/var/lib/postgresql/data --name postgres_container_name

Three modes of stopping an instance

The instance can be stopped using the pg_ctl stop command .
Command syntax:
pg_ctl stop [-D data_dir]
[-ms[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s]
There are three modes to choose from:
smart - prohibits new connections and waits for existing sessions to voluntarily disconnect. This can

take hours, while new connections are impossible, and this is downtime. In Oracle Database, this mode
is called "shutdown normal". Thus, the smart mode is not practical. However, unlike Oracle Database,
after sending a signal to stop in smart mode, you can send a signal to stop in fast mode. In Oracle
Database, you can only shut down an instance in "abort" mode.
Therefore, if you have launched the smart mode, you have the opportunity to extinguish the instance

in the fast mode.
fast - new connections are prohibited, all server processes are sent a signal to abort transactions and

exit (linux signal SIGTERM 15). Then the remaining background processes of the instance are
terminated in the correct order. One of the last actions is a checkpoint. In Oracle Database, this mode is
called "shutdown immediate". Unlike Oracle Database, transaction rollback in PostgreSQL is performed
immediately, so the delay in stopping is mainly determined by the duration of the checkpoint.
fast - the default stop mode for stopping via pg_ctl stop and via systmemctl stop
On industrial clusters with a large amount of memory used by the instance, it is possible to minimize

the instance stop time, i.e. the downtime. To do this, before stopping the instance, you need to initiate
the execution of a checkpoint with the command checkp o int. After the checkpoint is executed, send a
signal to stop the instance. In this case, the checkpoint, which will still be executed when the instance is
stopped (the final checkpoint) in smart or fast mode, will have to write less data to disk and the final
checkpoint will be executed faster.
In smart and fast modes, all changed data in memory (that needs to be saved, "protected by the write-

ahead log") is written to files at the checkpoint, all files are synchronized to one point in time, and
information about the successful shutdown of the instance is written to the pg_control control file .
This is called a "clean shutdown". When the instance is subsequently started, the control file
determines that the instance was stopped correctly and no WAL reading is required.

36Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Three modes of stopping an instance

• smart - prohibits new connections and waits for
existing sessions to voluntarily disconnect. This
mode is not practical

• fast - new connections are denied, all server
processes are sent a signal to abort transactions and
exit. This is the best choice. This is the default.

• immediate - immediate shutdown mode

Stopping an instance

immediate - immediate shutdown mode. The parent postmaster process will send an immediate stop
signal (SIGQUIT 3) to all other processes and wait for them to terminate. If any process does not
terminate within 5 seconds, it will be sent a SIGKILL (9) signal. Then the postmaster process itself will
be terminated. This will "recover" (by replaying the WAL log) the next time the instance is started. It is
recommended to use only in extreme cases, such as a hang (no disk activity, no progress) of a fast
shutdown. In Oracle Database, this mode is called "shutdown abort".
Using pg_ctl stop is the most convenient way to shut down an instance, but you can send a signal to

the postgres process directly:
kill -INT `head -1 $PGDATA/postmaster.pid`
Note that the quotes are backticks, not apostrophes.
It is not worth sending the SIGKILL (9) signal to the postgres process, since the shared memory and

semaphores will not be released until the operating system is rebooted or until they are released
manually with the ipcrm command. Also, server and background processes may remain in memory. You
can view the shared memory segments and semaphores with the ipcs operating system command, and
release them with ipcrm.
You should not send a SIGKILL (9) signal to other instance processes, including server

processes (as is common when working with Oracle Database), as this may cause the instance to stop
immediately.
To disconnect sessions and interrupt a running command (in another session without interrupting it) in

PostgreSQL, it is convenient to use the functions pg_terminate_backend (sends SIGTERM 15 to the
server process) and
pg_cancel_backend (sends SIGINT 2).
Before performing procedures that require a correct shutdown, you should make sure that:

1) all processes of the stopped instance have been unloaded from memory (are not present in the
operating system)
2) the status of the correct cluster shutdown was written to the control cluster:
pg_controldata | grep state
Database cluster state: shut down
https://docs.tantorlabs.ru/tdb/en/17_5/se/server-shutdown.html

37Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Stopping an instance

• An instance can be stopped using the pg_ctl stop
command regardless of how the instance was started.

• Using pg_ctl is the most convenient and guaranteed way to
kill an instance.

• You can send a signal to the postgres process directly:
kill -INT `head -1 $PGDATA/postmaster.pid`

• a SIGKILL (9) signal to any instance process.
• systemctl stop does not guarantee that the instance will

stop

Stopping an instance

will contain messages like the following when performing checkpoints (log_checkpoints=on
parameter):
MESSAGE: Checkpoint started: shutdown immediate

or
LOG: checkpoint starting: shutdown immediate
PostgreSQL does not have a shutdown immediate command .
The text " shutdown immediate " in the log refers to the checkpoint properties, not the instance

shutdown mode. When stopping an instance in immediate mode
(command pg_ctl stop -m immediate) checkpoint is not executed.
Text in checkpoint messages (after LOG: checkpoint starting:) means:
shutdown - checkpoint caused by stopping the instance
immediate - execute the checkpoint at maximum speed, ignoring the value of the
checkpoint_completion_target parameter
force : perform a checkpoint even if nothing has been written to the WAL since the previous

checkpoint (there was no activity in the cluster), this happens if the instance is shut down or at the end-
of-recovery
wait : Wait for the checkpoint to complete before returning control to the process that called the

checkpoint (without wait , the process will run the checkpoint and continue running).
end-of-recovery : checkpoint at the end of log rolling (cluster recovery by startup process)
xlog : checkpoint caused by log files reaching half the size specified by max_wal_size ("by size",

"on demand")
time : the checkpoint was triggered by reaching the checkpoint_timeout parameter value ("by

time")

38Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Stopping an instance

• When performing checkpoints (parameter log_checkpoints=on
), the cluster log will contain messages like:

MESSAGE: Checkpoint started: shutdown immediate
or
LOG: checkpoint starting: shutdown immediate
• The text in the "shutdown immediate" message refers to the

checkpoint properties, not the instance shutdown mode. Stopping
an instance in immediate mode (pg_ctl stop -m immediate
command) does not perform a checkpoint.

• PostgreSQL does not have a shutdown immediate command

Management utilities (SQL command wrappers)

In the directory /opt/tantor/db/17/bin the path to which is added for the user postgres to the
environment variable PATH during installation there are utilities for working with the database cluster.
We have considered the initdb utility . Next we will consider the main utility - the terminal client
psql , which allows you to pass SQL commands for execution.
Some of the cluster administrator's actions are not performed by SQL commands (or are more

convenient to perform) and command line utilities are supplied for such actions. We will consider some
of them during the course.
Wrappers for some SQL commands (which can be sent to be executed by the psql utility).

Sometimes it is convenient to perform actions in a database cluster using command line scripts, and in
such scripts it is convenient to use wrappers instead of writing a command call via psql :
psql -c "SQL COMMAND"
There is no difference in the result between using shell utilities and SQL commands.
clusterdb - wrapper for SQL CLUSTER command
createdb - a shell for the CREATE DATABASE command. There is no difference between creating a

database with this utility or with the command
createuser - wrapper for the CREATE ROLE command
dropdb - wrapper for the DROP DATABASE command
dropuser - wrapper for SQL DROP ROLE command
reindexdb - wrapper for SQL command REINDEX
vacuum db - wrapper for VACUUM command
vacuum lo - has nothing to do with vacuuming (VACUUM). vacuumlo is a utility that is easy to run

periodically to remove (clean) orphaned large objects from cluster databases. There are different ways
to automate the removal of orphaned large objects (for example, triggers), this utility is one of them.
The "lo" extension contains the lo_manage() function for use in triggers that prevent orphaned
large objects from appearing.
Description of utilities:
https://docs.tantorlabs.ru/tdb/en/17_5/se/reference-client.html

39Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are located in the directory /opt/tantor/db/17/bin
• directory path is included in PATH environment variable

of postgres user in Linux
• Part of the command line utilities are wrappers for SQL

commands
• Utilities and their corresponding commands:
clusterdb - CLUSTER
createdb - CREATE DATABASE
createuser - CREATE ROLE
dropdb - DROP DATABASE
dropuser - DROP ROLE
reindexdb - REINDEX
vacuumdb - VACUUM

Management utilities (SQL command wrappers)

Backup Management Utilities
pg_archivecleanup is used in the archive_cleanup_command parameter value

to remove unwanted WAL files on the physical replica (standby cluster)
pg_basebackup - a utility for creating cluster backups (backups) for clones, replicas

and just for storage. It can copy a directory or pull files over the network using the
replication protocol
pg_combinebackup - combines incremental backups with full backups
pg_dump - creates a logical copy of database objects
pg_dumpall - creates a logical copy of the entire cluster or common cluster objects in

the form of a text script for creating databases and objects. It is used in the procedures
for updating the main version, migrating the cluster to other platforms, assemblies, and
PostgreSQL forks. Of interest is the -g parameter, which allows you to dump common
cluster objects.
pgcopydb - Tanor Postgres utility for automating data transfer at the logical level

between databases with maximum speed, uses pg_dump, pg_restore utilities and
logical backup techniques
pg_receivewal - used to retrieve WAL (stream archive) files via the replication

protocol. Typically used to organize WAL log storage on nodes with backups.
pg_recvlogical - for logical replication, rarely used.
pg_resetwal clears the WAL log. Used with the --wal-segsize option to resize

WAL segments if you want to change their size after cluster creation. The procedure
requires care and knowledge of what will happen to backups and WAL file names. It is
also critical for the procedure of resizing WAL segments that the cluster is shut down
correctly. They are changed either because of a large number of files in one directory,
or because the maximum size of the log buffer in shared memory (wal_buffers) is
limited by the size of the WAL file. The effect of the WAL buffer size on performance is
nonlinear.
pg_restore - utility for restoring from logical backups created by the pg_dump
utility in some modes (in other modes, psql is used for restoration)
pg_waldump - shows the contents of WAL segments, used for debugging in complex

recovery cases
https://docs.tantorlabs.ru/tdb/en/17_5/se/reference-server.html

40Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_archivecleanup - used on replicas (standby clusters)
• pg_basebackup - creates physical backups
• pg_combinebackup - combines incremental backups with full

backups
• pg_dump, pg_dumpall, pg_restore for logical backup

(creating dumps)
• pgcopydb - Tanor Postgres utility for logical backup
• pg_receivewal - for creating streaming WAL archives
• pg_resetwal to change the size of WAL segments

Backup Management Utilities

Management utilities (other)

pg_amcheck - refers to the standard extension (PostgreSQL extension) amcheck , which has a set of
functions for checking for damage in objects in which data is physically stored, called relations.
Relations (synonym “class”) are called tables, indexes, sequences, views, external (foreign) tables,
materialized views, composite types. If the amcheck functionality reports damage, then it really is there,
false positives are excluded.
pg_checksums - enable/disable calculation of checksums of data blocks and verification of cluster

data blocks. In Oracle Database, the equivalent is the dbv (dbverify) utility
pg_rewind - for synchronizing clusters, usually to restore a former master (primary cluster) after a

failover to a physical replica (standby cluster), as well as in upgrade procedures (transition to a new
primary version)
pg_upgrade - used when upgrading to a new major version of PostgreSQL, as well as when migrating

from vanilla PostgreSQL to Tantor Postgres
pg_test_fsync - used when configuring WAL log writing parameters
pg_test_timing - measures the speed and stability of time stamp acquisition
Useful utilities
pg_config - information about the parameters of installation and assembly of the DBMS
pg_controldata - outputs the contents of the cluster control file
$PGDATA/global/pg_control in text form
pgbench - the standard PostgreSQL utility for load testing
pgcompacttable - Tantor Postgres utility for reducing table file sizes

https://docs.tantorlabs.ru/tdb/en/17_5/se/reference-client.html

41Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_checksums - enable/disable calculation of checksums of data
blocks and verification of cluster data blocks

• pg_rewind - for synchronizing clusters, for example, after failover to a
physical replica and in upgrade procedures

• pg_upgrade - to upgrade to a new major version of the DBMS
• pg_test_fsync - measures the speed of writing to WAL segments in

different modes
• pg_config - information about the parameters of installation and

assembly of the DBMS
• pg_controldata - outputs the contents of the cluster control file

$PGDATA/global/pg_control in text form

Management utilities (other)

Management Utilities (continued)

pg_isready check that the cluster accepts connections, similar to psql -c "\q". The utility is only
more convenient to obtain the result, but in psql you can specify additional commands to check the
availability of objects from the point of view of a specific client application.
oid2name is a convenient utility for finding which object a file belongs to in the cluster directory

(PGDATA) and table spaces, as well as other information about the belonging of files and directories to
cluster objects. Similar actions can be performed using SQL commands and SQL functions, but this is
much more complicated.
postgresql-check-db-dir - script for a shallow check of the PGDATA directory structure, called

by systemd before calling pg_ctl to start an instance, to make sure that the PGDATA directory contains
something that looks like a cluster directory.
vacuum_maintenance.py and other Python scripts are used by the pg_partman extension for

partitioning tables
pg_repack - an extension that allows you to reorganize files that store data without completely

blocking the object. Analogous to the VACUUM FULL command, only without exclusive blocking.
Discussed earlier in this chapter:
pg_ctl - Manages a cluster instance
initdb - creates a cluster
https://docs.tantorlabs.ru/tdb/en/17_5/se/reference-server.html

42Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_isready - check that the cluster is accepting connections
• oid2name - a convenient utility for finding what object a file

or directory belongs to
• vacuum_maintenance.py and other Python scripts are used

by the pg_partman partitioning extension pg_repack - refers
to the extension of the same name, which implements an
analogue of VACUUM FULL, only without exclusive locking

• pg_ctl - manages the cluster instance, was discussed earlier
• initdb - creates a cluster, was discussed earlier

Management Utilities (continued)

43Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

psql utility

1c

Terminal client psql

PostgreSQL comes with a standard terminal client (command line utility) psql.
The course does not aim to monotonously describe all the capabilities of psql, there are many of them.

psql functionality is wider than that of similar utilities in databases of other manufacturers. The
following slides discuss features that may seem redundant, but they are exactly what we encounter in
everyday work and simplify the solution of everyday tasks. In practice, additional examples are given
for this chapter.
psql allows you to enter commands interactively, send them to the server process, and view the

results of executing commands. You can also pass commands to psql non-interactively - commands
can be taken from a file or a command line parameter.
psql -f script_file.sql
psql -c "CREATE SCHEMA sh; CREATE TABLE sh.t (n numeric);"
psql has configuration files. The global one is located in the directory pointed to by the pg_config --
sysconfdir parameter.
for Tantor Postgres this is the file /opt/tantor/db/17/etc/postgresql/psqlrc
Local for the operating system user is located in his home directory, the default value is ~/.psqlrc

The location of the local file can be overridden by the PGCONFIG environment variable .
By default, the files are not created, but you can create them. In Oracle Database, the glogin.sql file is

used for sqlplus
Both files can be made psql version specific by appending a hyphen and the PostgreSQL major or

minor version identifier to the file name. For example, ~/.psqlrc-17 or ~/.psqlrc-16.8 All files
apply, but the more specific file takes precedence.
These files can be used to make working in psql more convenient.
https://docs.tantorlabs.ru/tdb/en/17_5/se/app-psql.html#psql

44Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• allows you to enter commands interactively
• It is possible to pass commands non-interactively - commands can

be taken from a file or a command line parameter
• there are configuration files

global /opt/tantor/db/17/etc/postgresql/psqlrc
local by default ~/.psqlrc

• Non-interactive execution of commands:
psql -f script_file.sql
psql -c "CREATE SCHEMA sh; CREATE TABLE sh.t (n
numeric);"

• Description of psql command line options --help

Terminal client psql

psql: connect to database

psql connects to a specific database in the cluster. To connect to the database, you need to pass
authentication, which is usually configured separately for local connections via Unix sockets, network
connections from the same host to the localhost address (127.0.0.1), and connections from other hosts.
PostgreSQL supports various authentication methods, they will be discussed in the following chapters
of the course. Authentication is possible without a password, but the session must be associated with a
role (user) of the cluster. Connection without association with a role previously created in the cluster is
possible only in single-user mode. In single-user mode, the connection is performed under a user who
is implicitly granted superuser rights.
Role (ROLE) and user (USER) are synonyms and absolutely identical concepts. The commands CREATE
ROLE and CREATE USER are absolutely identical.
After presenting the role name, the server process checks the privileges: can the role create a session

(has the LOGIN attribute) with a specific database. The SUPERUSER attribute does not include the right
to create a session; roles with both the SUPERUSER and NOLOGIN attributes can exist at the same time.
It is impossible to connect to several databases simultaneously, even from the same cluster. The

databases are isolated from each other in terms of security and privileges. To work with tables in
different databases simultaneously, even if they are in the same cluster, you can use the
postgres_fdw (Foreign Data Wrapper) or dblink extensions . To copy data between databases,
you can use streaming data transfer ("pipe") and the pg_dump utility ... | psql ...

45Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• psql connects to a specific database in a cluster
• To connect to the database, you need to pass authentication
• Authentication methods are discussed in the following chapters.
• Role and user are synonyms and absolutely identical concepts
• It is not possible to connect to several databases at the same time,

even those located in the same cluster.

psql: connect to database

psql: connection parameters

Command line parameters for psql that can be used to specify where and under what role to connect:
-U role or --username=role default value is the name of the operating system user under which psql is

running
-d dbname or --dbname=dbname defaults to the role name specified by the -U parameter
-h host or --host=host default value /var/run/postgresql (on the instance side, the same value is set

during assembly and is displayed in the unix_socket_directories parameter), i.e. a local connection via a
Unix socket is used.

If psql or other utilities return an error
could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket " /tmp/ .s.PGSQL.5432"?
It is possible that an old version of the utility is launched (for example, from the path /usr/bin/psql). The version

is checked by psql -V
In addition to passing the -h parameter, you can specify the Unix socket directory in the PGHOST environment
variable , for example, export PGHOST=/var/run/postgresql
-p port or --port=port the default value is 5432

for local connections via Unix socket the port is also used, since the directory is the same for all clusters. If this is
a directory in the file system, then the main postgres process creates a file in it whose suffix is the port number.
For example, /run/postgresql/.s.PGSQL. 5432

You can also use the shorthand syntax psql database_name user_name . For example, psql postgres
postgres

A useful psql command to display connection details is: \conninfo
You are connected to database "postgres" as user "postgres" via socket in
"/var/run/postgresql" at port "5432".

The name of the role under which the connection was created (authentication passed) is returned. The SET
ROLE and SET SESSION AUTHORIZATION commands do not change the result of \conninfo

To reconnect in psql use the command
\c database_name role_name host port
If you do not want to specify some parameters, but want to use the values of the current connection, then

instead of the parameter in its position you need to use the dash symbol. You can omit the dash at the end. For
example:
\c - user1
You are now connected to database "postgres" as user " user1 ".
\c - - localhost
You are now connected to database "postgres" as user " user1 " on host " localhost "
(address "127.0.0.1") at port "5432".

If a new connection cannot be established, the old one is maintained.

46Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Command line parameters for connection:
• -U role , defaults to operating system user name
• -d database_name , defaults to role name
• -h host , default /var/run/postgresql
• -p port, default 5432
• Teams:
• Command to display connection details:
\conninfo

• reconnect:
\ c database_name role_name host by rt

• parameters of the current connection can be passed by specifying
the dash character "-"
\c - - localhost

psql: connection parameters

Getting help with psql commands

After installing PostgreSQL, you can run psql on the server without parameters and psql connects
locally via a Unix socket to the postgres database under the postgres role.
psql commands start with a backslash \
command line options --help
psql command help \?
list of SQL commands \h

after \h you can enter the initial words of a command and get help for that command
You can find out what SQL commands psql generates to execute commands starting with \d

(describe - get a description of an object) by setting the parameter
\ set ECHO_HIDDEN on
If the text does not fit on the screen, the "pager" functionality is used, you will see a colon.
Pressing the <ENTER> key will display another line.
If you need to highlight the next page, then after the colon you need to type the symbol "z"
If you go back to the previous page - the symbol "b" (back)
if you want to interrupt the output you can type the symbol "q" (quit)
if you want to get help and find out what other key combinations there are, you can type the letter "h"

(help) after the colon
You can disable pagination with the command \pset psger off
Pagination is implemented by passing the output result to the operating system's less utility.
The command history is accessible by default by pressing the up/down arrows on the keyboard. The

history of commands typed interactively in psql is stored in the file ~/.psql_history Its location can
be overridden by the environment variables HISTFILE or PSQL_HISTORY , but there is no point in this.
Next to ~/.psql_history , for example, there is a file ~/.bash_history with the history of
the operating system terminal commands. File names starting with a dot are
considered "hidden" files in Linux. For example, the ls command without parameters
does not show such files.
psql can be run from a client machine from builds other than Tantor Postgres. psql works better with

servers of the same or older major version. When connecting to a newer version of the DBMS, psql
commands (those that begin with a backslash) may fail to work.

47Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• psql commands start with a backslash \
• psql command line options --help
• psql command help \?
• list of SQL commands \h

after \h you can enter the initial words of a command and get help on it
• by default, if the result does not fit in the terminal window, paginated

output is used
• for page-by-page output, the operating system utilities more or less are

used, the less utility is more convenient
• the utility is installed by the command \setenv PAGER 'less -XS'
• paging mode is disabled by the command
\pset pager off

• in page mode (after the colon):
q - exit, z - forward, b - back, h - help

Getting help with psql commands

Formatting psql output

You can view the current formatting settings by typing \pset
If you need to repeat a command at intervals, and such a need for monitoring may arise for the

administrator:
\watch seconds (exit CTRL+X)
\a enable/disable vertical column alignment;
\t enable/disable display of header and footer.
By default, columns are separated by a vertical bar, but you can set a different character, such as a

space:
\pset fieldsep ' '
Disabling alignment and replacing the separator with the desired symbol allows you to output the

selection result in a format convenient for transferring to a program working with tables.
When executing long queries and comparing execution speed, it is convenient to enable display of

execution time:
postgres=# \timing
Timing is on.
postgres=# \timing
Timing is off.

48Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• By default, psql displays the query result with pseudo-graphics:
postgres=# select datname, datatemplate from pg_database;

datname | datistemplate
-----------+---------------
postgres | f
template1 | t
template0 | t
(3 rows)
• you can fine-tune the output format with the \pset parameters and \a
\t \x switches

• view current formatting settings: \pset
• display command execution time, convenient for performance tuning
\timing on

Formatting psql output

Output the result in HTML format

If the number of columns is large and the terminal client with proportional font is inconvenient for
display, psql can generate the result not in text format, but in HTML format. This is done by the -H
parameter or the \pset format html parameter.
An example of a command that sends an SQL command for execution and launches a browser with

the result in HTML format:
psql -c "command;" -H -o f.html | xdg-open f.html
In one line you can get the result of large samples in a readable format.
This handy command may be more convenient and faster to execute than using graphical utilities like

pgAdmin, and also in cases where graphical utilities are not installed on the operating system.

49Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• psql -c "command;" -H -o f.html | xdg-open f.html

Output the result in HTML format

Output the result in extended format

If the result string has many columns or long field values, you can display the data row by row.
Switching the output is done with the short command \x
\x again
The query usually specifies sorting and limiting the number of rows returned: ORDER BY and LIMIT .

50Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• switched by the command \x

Output the result in extended format

psql command prompt

It happens that the administrator gave the command "in the wrong window".
Changing the psql prompt helps reduce the likelihood of such cases.
The command prompt has default values that distinguish between the first line typed in a command

and subsequent ones.

By default, PROMPT2 differs from PROMPT1 by invisible characters: = And - . It is worth paying
attention to them.
PROMPT1, PROMPT2 and PROMPT3 define the appearance of the invitation.
PROMPT1 is issued when psql is waiting for a new command to be entered.
PROMPT2 if there is a string in the buffer, for example because the command was not terminated by a

semicolon or the quotes were not closed.

A typical question is: what is the third prompt responsible for?
PROMPT3 is issued when executing the COPY FROM stdin command , when data is entered into the

terminal to be inserted into a table. This mode is terminated by \. <ENTER>
This mode is rarely used, so the third prompt is not changed and people forget what it is responsible

for.
During industrial operation, it is convenient to change these prompts in the ~\.psqlrc file to see

which cluster database is connected.
Example of prompt installation:
\set PROMPT1 '%[%033[0;31m%]%n%[%033[0m%]@%[%033[0;36m%]%/%[%033[0m%]
%[%033[0;33m%]%[%033[5m%]%x%[%033[0m%]%[%033[0m%]%R%# '
\set PROMPT2 '%[%033[0;31m%]%n%[%033[0m%]@%[%033[0;36m%]%/%[%033[0m%]
%[%033[0;33m%]%[%033[5m%]%x%[%033[0m%]%[%033[0m%]%R%# '

51Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Why? To avoid issuing commands "in the wrong window"
• The invitation (prompt) can be changed using the commands

\set PROMPT1 and \set PROMPT2

• "-" second and subsequent lines
(PROMPT2)

• transaction
is open and not committed
"!" transaction is in a failed state and
can only be rolled back, even if you type COMMIT;

psql command prompt

Autocommit transactions and running psql commands

A command starting with a backslash " \ " is processed by psql. You can view help on such
commands with the command \?
\set command can be used to view psql variables. Some variables are predefined and control psql

operation. You can set your own variables for the time until you exit psql and use them as macros.
It is worth distinguishing the commands \set \pset set . The latter is related to SQL and changes

the parameters of the server process at the session level (set session) or transaction (set local
). \pset are predefined parameters for formatting the psql output.
The remaining commands are sent as text to the server process. To send a command, enter " ; " and

a carriage return (the <ENTER> key on the keyboard).
Psql has non-standard commands \g \gx \gexec \gset \g that can replace the standard ";"

These non-standard commands have a lot of capabilities, but their use in scripts makes the scripts non-
portable - the scripts will not be able to run anywhere except psql.
If you don't type " ; " but just type a carriage return, then psql considers the command to be multi-

line and previous lines accumulate in the buffer.
If you want to clear the buffer, you can type \r (short for \reset)
View the contents of the buffer or the last command if the buffer is empty \p (short for \print)
AUTOCOMMIT mode by default . The default autocommit mode is also used in Java programs, in the

JDBC specification. Oracle Database does not use autocommit mode in its terminal client sqlplus .
Autocommit mode means that psql implicitly sends a COMMIT command after each command that

runs within a transaction (and together with such a command);
If you want to disable autocommit mode, you can disable this mode in the system psqlrc file or in

your ~/.psqlrc file or in your session. This is controlled by the
\set AUTOCOMMIT on parameter.
\set AUTOCOMMIT off

52Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• By default, psql operates in AUTOCOMMIT mode.
• Change the autocommit mode:
\set AUTOCOMMIT on
\set AUTOCOMMIT off

• view psql variables: command \set
• clearing the buffer of typed commands \r
• view buffer or last command if buffer is empty \p
• ;<ENTER> terminates the SQL command and sends it to the

server process for execution

Autocommit transactions and running psql
commands

psql variables

Psql variables are set with the \set name value command. They live until psql exits or until \unset
name is executed.
Variables can be used as macros. Variables can be referenced by prefixing them with a colon.
Example:
postgres=# \set TEST1 'select user'
postgres=# :TEST1;
user

postgres
(1 row)
postgres=# select * from (:TEST1);
By default, vi is used for editing commands \ef \ev \e . You can override the editor by setting an

environment variable
export PSQL_EDITOR=/usr/bin/mcedit
Instead of PLQL_EDITOR you can use the names EDITOR or VISUAL .
Or, while in psql, give the command \setenv PSQL_EDITOR /usr/bin/mcedit
Or insert the command \setenv PSQL_EDITOR /usr/bin/mcedit in the file ~/.psqlrc or global
/opt/tantor/db/17/etc/postgresql/psqlrc
In the documentation section "Environment"

https://docs.tantorlabs.ru/tdb/en/17_5/se/app-psql.html#APP-PSQL-ENVIRONMENT
The operating system environment variables to which psql responds are specified.
Popular variables: PGUSER PGDATABASE PGHOST PGPORT . They allow you to configure psql

connection without specifying parameters to any database.
Operating system environment variables can be set with the \setenv command , including in the
~/.psqlrc file or the global /opt/tantor/db/17/etc/postgresql/psqlrc . Other commands like
\set \pset \! export environment variables are not set.

53Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are set by the command \set name value
• Lifetime until psql exits or until \unset name is executed
• there are operating system environment variables that psql

responds to
• they can be set in psql or in the parameter files (~/.psqlrc)
\setenv PSQL_EDITOR /usr/bin/mcedit

psql variables

Executing batch files in psql

In psql, you can execute an operating system command without exiting psql. To do this, use the
command \! linux_command
To output the results of command execution (POSIX output stream) to an operating system file, you

can use the \o filename command . The results will not be displayed on the screen.
To execute a batch file, you can use \i filename
\o checkpoint.sql
select 'checkpoint;' \g (tuples_only=on format=unaligned)
\o return output to screen
\i checkpoint.sql
You can also execute commands from a file (script) like this:
psql < checkpoint.sql
psql -f checkpoint.sql
In this case, it is not necessary to put the exit command last in the file; psql will finish working itself

when it reaches the end of the file (unlike the Oracle Database sqlplus utility).
Moreover, it is possible to form commands and execute them without creating an intermediate script

file. For this, the \gexec option is used
postgres=# select 'checkpoint;' \gexec
CHECKPOINT

54Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• \! linux_command - execute an operating system command
• \o file.sql - redirect output to file
• \o - return output to screen
• \i file.sql - execute commands from file
• More examples of how to execute commands from a file:
psql < file.sql
psql -f file.sql

• Execute each line generated by the SELECT query as a
command in psql:
SELECT 'checkpoint;' \gexec

Executing batch files in psql

Graphical applications: pgAdmin

The most popular universal (for development and administration) application is DBeaver, which has a
free version.
The application can be downloaded using the command:
wget https://dbeaver.io/files/dbeaver-ce_latest_amd64.deb
and install with the command:
sudo dpkg -i dbeaver-ce_latest_amd64.deb
You can launch the application from the Start menu -> Development -> dbeaver-ce or with the

command:
/usr/bin/dbeaver-ce
DBeaver allows you to debug stored procedures and functions using the pldebugger extension

interface.
For application development, you can also use the commercial application DataGrip from JetBrains,

which integrates with the company's development environments: IntelliJ IDEA and PyCharm. The
integration allows you to check the syntax and auto-completion of SQL commands when writing
program code.

55Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• has a freely distributable version
• written in java and works in Astra Linux 1.8

Graphical applications: DBeaver

Graphical applications: pgAdmin

pgAdmin is a freely distributed graphical program for working with PostgreSQL clusters. pgAdmin
gained popularity because it appeared before the DBeaver application was created.
The utility version 3 pgAdmin3 had a window interface, the development was completed in 2016. In

version 4 pgAdmin4 has a web interface with the ability to create a link on the desktop. The utility
allows you to use step-by-step debugging of stored routines - it is a client interface to the functionality
of the freely distributed pldebugger library implementing the server part of the debugger functionality.
The client interface is also the DBeaver application, written in Java.
pgAdmin3 does not work with PostgreSQL 15 and newer, because when connecting it accesses the

datlastsysoid column of the pg_database table of the cluster system catalog, which was removed in
version 15.
pgAdmin4 can be installed in Astra Linux 1.8
postgres@tantor:~$ sudo apt list | grep pgadmin
pgadmin4-desktop/stable 8.13-astra.se1+ci5 amd64 [upgradable from: 7.4-
astra.se1+ci5]
pgadmin4-server/stable 8.13-astra.se1+ci5 amd64 [upgradable from: 7.4-
astra.se1+ci5]
pgadmin4-web/stable 8.13-astra.se1+ci5 all
pgadmin4/stable 8.13-astra.se1+ci5 all
Run from menu Start-> Development ->pgAdmin 4
In the pgAdmin4 menu: in File->Preferences-> Paths -> Binary Paths--> PostgreSQL 17 set the path
/opt/tantor/db/17/bin so that you can run the "PSQL Tool" from the Tools menu.

56Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• a freely distributed graphical program for working with
PostgreSQL clusters

• pgAdmin works in Astra Linux 1.8

Graphical applications: pgAdmin

Graphic Applications: Tantor Platform

The Tantor platform is software for managing any PostgreSQL-based DBMS and Patroni clusters.
Allows you to conveniently manage a large number of clusters. Belongs to the class of software
products that includes Oracle Enterprise Manager Cloud Control.
The Tantor platform is actively evolving to meet the needs of PostgreSQL administration.
The Tantor Platform has a SQL editor where you can view objects, execute commands, create

procedures and functions.
https://docs.tantorlabs.ru/tp/5.3/instances/DB_browser.html

57Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• application for administration and monitoring of large numbers
of PostgreSQL clusters and Patroni clusters

• Enterprise Manager class application

Graphic Applications: Tantor Platform

Demonstration

Downloading the installer
Setting permission to execute the installer
Setting the location of distributions
Installation with database creation
Checking that the cluster is running
Stopping services
Uninstallation

58Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Downloading the installer
• Setting permission to execute the installer
• Setting the location of distributions
• Installation with database creation
• Checking that the cluster is running
• Stopping services
• Uninstallation

Demonstration

Practice

Creating a cluster
Creating a cluster using the initdb utility
Single user mode
Passing parameters to an instance on the command line
Localization
Single-byte encodings
Using Management Utilities
Setting up the psql terminal client
Using the psql terminal client
Restore saved cluster

59Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Creating a cluster
2. Creating a cluster using the initdb utility
3. Single user mode
4. Passing parameters to an instance on the command line
5. Localization
6. Single-byte encodings
7. Using Management Utilities
8. Setting up the psql terminal client
9. Using the psql terminal client
10.Restore saved cluster

Practice

60Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Architecture

2a

PostgreSQL instance

The postgres process (the obsolete name postmaster) is a process that services PostgreSQL
(database server). This is the first process that starts, listens on network interface ports, and creates a
Unix socket file through which it accepts local connections. This process starts (spawns, forks) other
processes and is their parent process. These are server (traditional name - backend) processes that
service client sessions and background processes that perform useful tasks to service the database
cluster.
A PostgreSQL database cluster is a set of databases stored in the file system in the PGDATA directory

as sets of files. One postgres process instance always serves only one database cluster, and a
database cluster can be served by only one postgres process instance. Several postgres instances can
run on a single physical or virtual host (in a single operating system), serving different database
clusters. Postgres instances must use different ports of both network interfaces and different Unix
socket files.
A PostgreSQL instance is the postgres process, the operating system processes it spawns, and the

memory these processes use. Each process has local memory, which only that process has access to,
and shared memory, which is accessible by multiple processes or even all processes in the instance.
List of PostgreSQL instance processes:
postgres@tantor:~$ ps -eLo ppid,pid,cmd | egrep 'PPID|postgres'
PPID PID CMD
1 743184 /opt/tantor/db/17/bin/ postgres main process
743184 743185 postgres: logger process writing to logging collector
743184 743186 postgres: checkpointer background checkpoint process
743184 743187 postgres: background writer background writer process
743184 743189 postgres: walwriter background log writer process
743184 743190 postgres: autovacuum launcher autovacuum launcher process
743184 743191 postgres: pg_stat_advisor BackgroundTaskManager extension process
743184 743192 postgres: autoprewarm leader pg_prewarm extension process
743184 743193 postgres: logical replication launcher logical replication launcher process
644740 795748 psql -d demo -U alice -h /var/run/postgresql client, psql utility
743184 795749 postgres: alice demo [local] idle process serving psql

The client connected via a Unix socket. to the demo database under the user alice . The client is
served by its server process with process number 795749 . The rest of the instance processes are
background.

61Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• PostgreSQL instance - the postgres process,
the operating system processes it spawns, the
memory these processes use

• example of processes:

PostgreSQL instance postgres

process 1

process 2

process N

postgres@tantor:~$ ps -eLo ppid,pid,cmd | egrep 'PPID|postgres'
PPID PID CMD
1 743184 /opt/tantor/db/17/bin/ postgres main process
743184 743185 postgres: logger process writing to logging collector
743184 743186 postgres: checkpointer background checkpoint process
743184 743187 postgres: background writer background writer process
743184 743189 postgres: walwriter background log writer process
743184 743190 postgres: autovacuum launcher autovacuum launcher process
743184 743191 postgres: pg_stat_advisor BackgroundTaskManager extension process
743184 743192 postgres: autoprewarm leader pg_prewarm extension process
743184 743193 postgres: logical replication launcher logical replication launcher process
644740 795748 psql -d demo -U alice -h /var/run/postgresql client, psql utility
743184 795749 postgres: alice demo [local] idle process serving psql

PostgreSQL instance

In PostgreSQL, there is no strict assignment of actions to processes. Server processes can read data
files into memory (buffer cache), send blocks to the operating system for writing, send for writing from
the log buffer to log files, perform vacuuming using the VACUUM command.
The main resources used by the instance are: disk, memory, processor, network. The most loaded

resource is disk. To reduce the load, the data file contents are cached in the buffer cache. The buffer
cache is a structure in shared memory, usually having the largest size, so the buffer cache and auxiliary
memory structures and the processes that service it are given more attention. These are the
checkpointer and background writer (bgwriter) processes. All changes to the data are made through
the buffer cache, there are no direct changes to the data files. For temporary tables, an analog of the
buffer cache is used, but only in the memory of the server process.
The buffer cache is a read/write cache (changes are held in memory). Fault tolerance is achieved by

logging changes that are made to the data files through the buffer cache. The log is called WAL (Write
Ahead Log) and consists of files of 16 MB (by default). The log files are written to by server processes
and any other processes that make changes to the data, but there is also an auxiliary process called
walwriter.
A set of background processes of autovacuum serves a separate task - deleting obsolete data.
The startup process stops after the recovery is complete.
The walsender processes are started when clients (pg_basebackup, pg_receivewal, walreceiver

replica processes) connect via the replication protocol.

62Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• processes , memory, cluster

PostgreSQL instance

buffer cache

8Kb

data files in:
PGDATA/base

PGDATA/global
PGDATA/pg_tblspc

8Kb 8Kb 8Kb 8Kb 8Kb 8Kb
WAL
cache
magazine

operating system page cache

log files in:
PGDATA/pg_wal

PGDATA/pg_xact
PGDATA/pg_subtrans
PGDATA/pg_multixact

and others

snap

mxact

CLOG

subtr
SLRU buffers

checkpointer bgwriter
walwriter

postgres

backend

backend

walsender

psql

pg_dump

pg_receivewal

autovacuum
worker

autovacuum
launcher

autovacuum
worker

5432

net
LOCK PROC

and
othersBuffer Descriptors

LOCK HASH PROC lock

Shared Buffer Lookup
Table

Checkpointer Data

Starting an instance, postgres process

The basic steps to launch an instance are:
1. The postgres process ("postmaster") is started
2. Configuration parameter files are read, the parameters are combined with command line parameters

and environment variables.
3. The rights to the PGDATA directory are checked, they should be 0700 or 0750
4. The presence of the pg_control control file is checked, PGDATA is set as the current directory for

the process, the postmastr.pid file is created in it, TLS is initialized, the shared libraries specified in the
shared_preload_libraries parameter are loaded , a handler is registered in case the process
disappears for the correct termination of child processes, the memory manager is initialized (according
to the configuration parameters), and a handler for closing network sockets is registered.
In postmaster.pid the first line stores the PID of the running postmaster. The file is checked once per

minute. If the file does not exist or the PID stored in it is not equal to the PID of the process, the postgres
process will be stopped by the SIGQUIT signal.
5. sockets are registered at all addresses (configuration parameter listen_addresses). A UNIX

socket file is created
6. The authentication settings file pg_hba.conf is read
7. The startup process is launched, which determines the cluster state using the pg_control
control file (if the PGDATA directory was not restored from a backup, i.e. there is no
backup.label file), and performs cluster recovery if necessary. The instance is opened for
reading and writing if the cluster is not a physical replica (there is no standby.signal file).
8. While the startup process is figuring out what to do, postgres starts the rest of the background

processes.
Server processes are started if there is a request to create a session from clients.
All spawned processes, including server ones, are periodically checked for existence.

63Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the postgres process is starting
• parameter files are read and combined with parameters passed

on the command line
• permissions on the PGDATA directory are checked
• pg_control control file is checked
• memory is allocated, shared libraries are loaded
• a postmaster.pid file is created in PGDATA, the presence of which

and the correctness of the process number are checked once per
minute

• postgres process registers server sockets, creates UNIX socket
file

• The file with authentication parameters pg_hba.conf is read
• the startup process and background processes are launched

Starting an instance, postgres process

Starting the server process

The server process is started by the postgres process when a client wants to connect (a request
was received on the server socket port or a Unix socket).
The main steps in starting a server process are:
1. When starting, the process gets the structure (part of memory) PGPROC from the list of free ones

and sets the fields to the initial values. The structures are in shared memory. PGPROC is also used by
background processes.
2. The process registers timeouts according to the values of configuration parameters, which can be

viewed with the command:
psql \dconfig *_timeout
so that the server process can be interrupted when the values of these parameters are exceeded
3. Three caches are initialized in the local memory of the server process:
Cache for fast access to tables (RelationCache)
System Catalog Table Cache (CatalogCache)
Command plan cache (PlanCache)
4 . Memory is allocated for the "portal" manager TopPortalContext. A portal is an executable query

that appears in the extended protocol at the binding stage, after parsing. Portals can be named (for
example, the name of a cursor) or unnamed - SELECT.
6. The values of the configuration parameters that are set at the connection stage are updated. A

delay is performed according to the post_auth_delay parameter.
7. The PgBackendStatus structure is updated.
8. The following parameters are sent to the client: server version, time zone, localization parameters,

data type formats, a pair of process ordinal numbers (id) and a cancellation token, by which the client
can cancel the execution of the request.
9. The server process loads the libraries specified in the parameters session_preload_libraries

and local_preload_libraries are loaded . During the loading process, the compatibility of the
libraries with the PostgreSQL version is checked. If the library was loaded earlier (
shared_preload_libraries), then the process simply receives a pointer to the loaded library.
10. Memory is allocated for processing messages from the client
11. The ReadyForQuery message is sent to the client - the server process is ready to receive

commands from the client.

64Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• for each session a server process is created
• Three caches are initialized (allocated and filled) in the local memory

of the server process:
› Cache for fast access to tables (RelationCache)
› System Catalog Table Cache (CatalogCache)
› Command plan cache (PlanCache)

• memory is allocated for the "portal" manager TopPortalContext
• the client is authenticated
• shared libraries specified in the session_preload_libraries and
local_preload_libraries parameters are loaded

• MessageContext memory is allocated for the command text and the
process is ready to receive commands

Starting the server process

Shared memory of instance processes

Examples of structures in shared memory of an instance:
Proc Array, PROC, PROCLOCK, Lock Hashes, LOCK, Multi-XACT Buffers, Two-Phase
Structs, Subtrans Buffers, CLOG Buffers (transaction), XLOG Buffers, Shared
Invalidation, Lightweight Locks, Auto Vacuum, Btree Vacuum, Buffer Descriptors,
Shared Buffers, Background Writer Synchronized Scan, Semaphores, Statistics .
There are more than 60 structures in total.
These structures are accessible by instance processes. Extensions can create their own structures.

List of structures and their sizes:
select * from (select *, lead(off) over(order by off)-off as true from
pg_shmem_allocations) as a order by 1;

name | off | size | allocated_size | true_size
-------------------+-----------+-----------+----------------+-----------
<anonymous> | | 4946048 | 4946048 |
Archiver Data | 147726208 | 8 | 128 | 128
...
XLOG Recovery Ctl | 4377728 | 104 | 128 | 128

| 148145024 | 2849920 | 2849920 |
(74 rows)

A string with a NULL name reflects unused memory. A string with the name "<anonymous>" reflects
the total size of structures for which memory was allocated without assigning a name.
The view does not show structures that are allocated and deallocated "dynamically" - as the instance

runs. Dynamic shared memory structures are used by workers. Workers are used, for example, to
execute SQL commands in parallel.
Only two instance shared memory structures can use HugePages : the buffer cache (size is set by the
shared_buffers configuration parameter) and the memory allocated by background processes
(memory is reserved for them by the min_dynamic_shared_memory configuration parameter).

65Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• more than 60 memory structures
• sizes and list - in pg_shmem_allocations view
• the size of some structures is specified by configuration

parameters

Shared memory of instance processes

select * from (select *, lead(off) over(order by off) - off as true_size from
pg_shmem_allocations) as a order by 1;

name | off | size | allocated_size | true_size
----------------------------+-----------+-----------+----------------+-----------
<anonymous> | | 4946048 | 4946048 |
Archiver Data | 147726208 | 8 | 128 | 128

...
XLOG Recovery Ctl | 4377728 | 104 | 128 | 128

| 148145024 | 2849920 | 2849920 |
(74 rows)

System Catalog Table Cache

CatalogCache is allocated in the local memory of each process in the context of
CacheMemoryContext. When accessing system catalog tables, the process searches for data in this
cache. If no data is found, then the rows of the system catalog tables are selected and cached. The
index access method is used to access the system catalog tables. If no entry is found in the system
catalog table, then the absence of an entry (negative entry) is cached. For example, a table is searched
for, and there is no such table, a record is saved in the local cache of the process that there is no table
with such a name. There are no restrictions on the size of CacheMemoryContext, it is not a circular
buffer or a stack.
When a transaction commits that creates, deletes, or modifies an object, leading to changes in the

system catalog tables, the process that performed the changes saves a message that the object has
been modified in the shmInvalBuffer ring buffer in shared memory. The buffer can store up to 4096
messages (the MAXNUMMESSAGES constant). Buffer size:
select * from (select *, lead(off) over(order by off) - off as true_size from
pg_shmem_allocations) as a where name='shmInvalBuffer' order by 1;
name | off | size | allocated_size | true_size
----------------+------------+-------+----------------+------------
shmInvalBuffer | 146865024 | 68128 | 68224 | 68224

If a process has not consumed half of the messages, it is notified to consume the accumulated
messages. This reduces the likelihood that the process will miss messages and will have to clear its
local system directory cache. Shared memory stores information about which processes have
consumed which messages. If a process, despite the notification, does not consume messages and the
buffer is full, the process will have to completely clear its system directory cache.
To prevent the process system directory caches from being flushed too often, objects (including

temporary tables) should not be created or deleted too often. Tables, including temporary ones, should
not be created or deleted too often during a session.
Cache flush and message count statistics are not collected by standard PostgreSQL extensions.

66Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• allocated in the local memory of each process in the context of
CacheMemoryContext

• When an object is created or deleted, the process that committed the
transaction sends a message to the shared memory ring buffer
shmInvalBuffer

• The buffer stores up to 4096 messages
• processes consume messages and update their local caches
• if the process misses messages, it will completely clear its local cache of

system catalog tables (CatalogCache) and refill it

System Catalog Table Cache

select * from (select *, lead(off) over(order by off) - off as true_size
from pg_shmem_allocations) as a where name='shmInvalBuffer' order by 1;

name | off | size | allocated_size | true_size
----------------+-----------+-------+----------------+-----------
shmInvalBuffer | 146865024 | 68128 | 68224 | 68224

(1 row)

View pg_stat_slru

PGDATA contains subdirectories that store cluster service data. To speed up read/write access to files
in these directories, caches in the instance's shared memory are used. Files are formatted in 8K blocks.
Caches operate using a simple least-recently-used (SLRU) algorithm. Cache usage statistics can be
viewed in the view:
select name, blks_hit, blks_read, blks_written, blks_exists, flushes, truncates
from pg_stat_slru ;
name | blks_hit | blks_read | blks_written | blks_exists | flushes | truncates
------------------+----------+-----------+--------------+-------------+---------+-----------
commit_timestamp | 0 | 0 | 0 | 0 | 103 | 0
multixact_member | 0 | 0 | 0 | 0 | 103 | 0
multixact_offset | 0 | 3 | 2 | 0 | 103 | 0
notify | 0 | 0 | 0 | 0 | 0 | 0
serializable | 0 | 0 | 0 | 0 | 0 | 0
subtransaction | 0 | 0 | 26 | 0 | 103 | 102
transaction | 349634 | 4 | 87 | 0 | 103 | 0
other | 0 | 0 | 0 | 0 | 0 | 0

In PostgreSQL starting with version 17 (in Tantor Postgres starting with version 15), SLRU cache sizes
are configurable.
The statistics from the view can be used to set configuration parameters that specify the sizes of

SLRU caches: \dconfig *_buffers
Parameter | Value
--------------------------+-------
commit_timestamp_buffers | 256kB
multixact_member_buffers | 256kB
multixact_offset_buffers | 128kB
notify_buffers | 128kB
serializable_buffers | 256kB
shared_buffers | 128MB
subtransaction_buffers | 256kB
temp_buffers | 8MB
transaction_buffers | 256kB
wal_buffers | 4MB

https://docs.tantorlabs.ru/tdb/en/17_5/se/monitoring-stats.html

67Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• PGDATA contains subdirectories where cluster service data is stored
• to speed up read/write access to files in these directories, caches in

the instance's shared memory are used
• statistics are used to set configuration parameters that determine the

sizes of SLRU caches

View pg_stat_slru

select name, blks_hit, blks_read, blks_written, blks_exists, flushes, truncates from pg_stat_slru;
name | blks_hit | blks_read | blks_written | blks_exists | flushes | truncates

------------------+----------+-----------+--------------+-------------+---------+-----------
commit_timestamp | 0 | 0 | 0 | 0 | 103 | 0
multixact_member | 0 | 0 | 0 | 0 | 103 | 0
multixact_offset | 0 | 3 | 2 | 0 | 103 | 0
notify | 0 | 0 | 0 | 0 | 0 | 0
serializable | 0 | 0 | 0 | 0 | 0 | 0
subtransaction | 0 | 0 | 26 | 0 | 103 | 102
transaction | 349634 | 4 | 87 | 0 | 103 | 0
other | 0 | 0 | 0 | 0 | 0 | 0

(8 rows)

Local process memory

Examples of structures in the local memory of the server process:
RelationСache, CatalogСache, PlanСache, work_mem, maintenans_work_mem,
StringBuffer, temp_buffers
Local memory is accessible only to one process, so locks are not needed to access it. Memory is

allocated for various structures ("contexts"). A universal set of functions is used to allocate and
account for the allocated memory, rather than situational calls to the operating system. Most structures
do not take up much memory and are interesting only for understanding the algorithms of the
processes. Of interest are those structures that are large in size or whose size can be influenced, for
example, by configuration parameters.
The parameters that most strongly influence the allocation of local process memory are:
work_mem - allocated for servicing the nodes (steps) of the execution plan (if the steps can be

executed simultaneously), including each parallel process. Together with the hash_mem_multiplier
parameter , it affects the memory allocated by each server and parallel process. For example, when
joining tables using hashing (Hash Join), the amount of memory allocated for servicing the JOIN will be
work_mem*hash_mem_multiplier*(Workers + 1) .
maintenance_work_mem default value is 64MB. Specifies the amount of memory allocated by each

process (server, parallel) participating in the execution of the VACUUM, ANALYZE, CREATE INDEX,
ALTER TABLE ADD FOREIGN KEY commands . The number of parallel processes is limited by the
max_parallel_maintenance_workers parameter . Index creation and regular (without FULL)
vacuum are parallelized. When vacuuming only in the index vacuuming phase (other phases are not
parallelized), one index can be processed by one (not several) parallel processes. Whether parallel
processes will be used depends on the size of the indexes.
Tantor Postgres has configuration options to customize local memory usage
enable_temp_memory_catalog and enable_large_allocations .

68Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• is accessible only to one process, so no locks are needed to access it
• most of the structures do not take up much memory and are only

interesting for understanding the algorithms of the processes
• The parameters that most strongly influence the allocation of local

process memory are:
› work_mem - allocated for servicing nodes (steps) of the execution plan (if

the steps can be executed simultaneously), including by each parallel
process. Together with the hash_mem_multiplier parameter , it
affects the memory allocated by each server and parallel process.

› maintenance_work_mem default value 64MB. Sets the amount of
memory allocated by each process (server, parallel) involved in
executing the VACUUM, ANALYZE, CREATE INDEX, ALTER TABLE
ADD FOREIGN KEY commands

Local process memory

pg_backend_memory_contexts view

The view shows the memory allocated by the server process servicing the current session. Memory
contexts are a set of memory chunks that are allocated by the process to perform a task. If there is not
enough memory, it is allocated additionally. A child context can be allocated to perform a subtask.
Contexts form a tree (hierarchy). The root of the tree is TopMemoryContext. The purpose of such an
organization of memory allocation and accounting is to not forget to release some part when releasing
memory, otherwise a memory "leak" will occur. When a memory context is released, all child memory
contexts are released.
In the pg_backend_memory_contexts view , the hierarchy is represented by the columns: name

(name of the memory context), parent (name of the parent memory context, level. The ident column
contains details of what is stored in the context. An example of a hierarchical query:
with recursive dep as
(select name, total_bytes as total, ident, parent, 1 as level, name as path from
pg_backend_memory_contexts where parent is null
union all
select c.name, c.total_bytes, c.ident, c.parent, p.level + 1, p.path || '->' ||
c.name
from dep p, pg_backend_memory_contexts c
where c.parent = p.name)
select * from dep limit 3;

name |total| parent |level| path
---------------------+-----+-----------------+-----+-------------------------------
TopMemoryContext |97664| | 1 |TopMemoryContext
TopTransactionContext| 8192|TopMemoryContext | 2 |TopMemoryContext->TopTransactionContext
PLpgSQL cast cache | 8192| TopMemoryContext| 2 |TopMemoryContext->PLpgSQL cast cache
(3 rows)

Память, выделенная текущему серверному процессу:
select sum(total_bytes), sum(used_bytes), sum(free_bytes) from
pg_backend_memory_contexts;

sum | sum | sum
---------+---------+--------
2114816 | 1380760 | 734056

In version 18, the id, parent_id, path columns will be added to the view .

69Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• shows the memory allocated by the server process serving the current
session

• memory context - a set of memory chunks that are allocated by a
process to perform a task

• a child context can be allocated to execute a subtask
• Contexts form a tree (hierarchy)
• In the hierarchy view, the columns display: name (name of the memory

context), parent (name of the parent memory context, level
• the ident column contains details of what is stored in the context

pg_backend_memory_contexts view

select sum(total_bytes), sum(used_bytes), sum(free_bytes) from pg_backend_memory_contexts;
sum | sum | sum

---------+---------+--------
2114816 | 1380760 | 734056

Function pg_log_backend_memory_contexts(PID)

The memory of other sessions can be output to the cluster diagnostic log using the function:
select pg_log_backend_memory_contexts(PID);
The following messages will be displayed in the log:
LOG: statement: SELECT pg_log_backend_memory_contexts(111);
...
LOG: logging memory contexts of PID 111
LOG: level: 0; TopMemoryContext: 60528 total in 5 blocks; 16224 free (6 chunks); 44304 used
LOG: level: 1; TopTransactionContext: 8192 total in 1 blocks; 6728 free (0 chunks); 1464 used
...
LOG: level: 2; AV dblist: 8192 total in 1 blocks; 7840 free (0 chunks); 352 used
LOG: Grand total: 658848 bytes in 38 blocks; 270616 free (32 chunks); 388232 used

Starting with version 17, the EXPLAIN command has a memory option (disabled by default), which
displays how much memory the scheduler used and the total memory of the server process as a string
at the end of the plan:
Memory: used=N bytes, allocated=N bytes
During the planning phase, when using a large (thousands) number of partitions of a partitioned table,

a lot of memory can be used.
The memory under "TID store" during vacuuming is taken into account in the lines:
level: 1; TopTransaction Context : 33570864 total in 3 blocks; 11056 free (405
chunks); 33559808 used
level: 2; _bt_pagedel: 8192 total in 1 blocks; 7928 free (0 chunks); 264 used
Grand total: 35510408 bytes in 234 blocks; 736144 free (626 chunks); 34774264
used
Memory of size maintenance_work_mem is allocated in the context (memory for) the

transaction. After the transaction is executed, the transaction context memory is freed during the
vacuuming process.

70Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Function pg_log_backend_memory_contexts(PID)

postgres=# SELECT pg_log_backend_memory_contexts(111);
pg_log_backend_memory_contexts

t

(1 row)
LOG: statement: SELECT pg_log_backend_memory_contexts(111);
...
LOG: logging memory contexts of PID 111
LOG: level: 0; TopMemoryContext: 60528 total in 5 blocks; 16224 free (6 chunks); 44304 used
LOG: level: 1; TopTransactionContext: 8192 total in 1 blocks; 6728 free (0 chunks); 1464
used
...
LOG: level: 2; AV dblist: 8192 total in 1 blocks; 7840 free (0 chunks); 352 used
LOG: Grand total: 658848 bytes in 38 blocks; 270616 free (32 chunks); 388232 used

• Since version 17, the EXPLAIN command has a memory option
(disabled by default), which displays how much memory the scheduler
used and the total memory of the server process

• The memory of other sessions can be output to the cluster diagnostic
log using the function:

Memory structures that support the buffer cache

Access to cluster data is via the buffer cache. To tune performance, it is worth getting to know its
operating model in general. This can be useful for guessing where and in what cases bottlenecks may
occur. Cases: unusual or extreme use of database functionality. For example: frequent creation and
deletion of tables, warming up the cache.
Below are the names of the structures in the shared memory of the instance related to the buffer

cache and the formulas for calculating their size in bytes. The names are given as in the
pg_shmem_allocations view . The names of the types and macros are given to make it convenient
to search for text in the PostgreSQL source code if you want to study the algorithms in detail.
Buffer Blocks - the buffer cache itself. The size of each buffer is equal to the block size. The exact

size of the allocated memory: NBuffers * (BLKSZ=8196) + (PG_IO_ALIGN_SIZE=4096) .
NBuffers - the number of shared buffers is specified by the shared_buffers
configuration parameter (default 16384, maximum 1073741823=30 bits).
Buffer Descriptors - buffer descriptors (headers). The descriptor structure is called BufferDesc

. It is located in a separate part of memory, one descriptor for each buffer. Size: NBuffers *
(BufferDescPadded = 64) - descriptors are aligned by the cache line, which is usually 64 bytes in
modern processors . These 64 bytes contain:
1) the BufferTag structure , which specifies the direct (self-sufficient, i.e. storing everything

needed to find a file and a block in it) address of the block on the disk:
typedef struct buftag
{
Oid spcOid; oid tablespace (symlink name in PGDATA/pg_tblspc)
Oid dbOid; oid of the database (subdirectory)
RelFileNumber relNumber; file name, represents a number
ForkNumber forkNum; fork number (enum with 5 possible values: -1 invalid, 0 main, 1 fsm, 2 vm, 3

init)
BlockNumber blockNum; block number relative to 0 block 0 of the file, size 4 bytes, maximum is set

by the macro MaxBlockNumber
} BufferTag;
BufferTag size is 17 bytes. Size with alignment is 20 bytes.
2) int buf_id - the sequence number of the buffer in the buffer cache starting from zero.

71Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Buffer Blocks - the buffer cache itself
› memory is allocated according to the number of buffers * 8192 bytes plus

4096 bytes
› shared_buffers configuration parameter specifies the number of

buffers
• Buffer Descriptors - buffer descriptors (headers)

› memory is allocated according to the number of buffers * descriptor size
(64 bytes)

• Each descriptor stores:
› block address on disk in the form of a block label (BufferTag)

– block address contains: TBS, DB, file, fork, block number from the beginning of
the first file

› buffer address as the buffer's ordinal number in the buffer cache
• the descriptor is associated 1:1 (one to one) with the buffer
• the 20 bytes of data that BufferTag occupies is enough (no need to

access anywhere) to read a block from disk

Memory structures that support the buffer cache

Memory structures serving the buffer cache (continued)

3) 32 bits, which contain: 18 bits refcount , 4 bits usage count (from 0 to
BM_MAX_USAGE_COUNT=5, 6 gradations in total), 10 bits flags, which reflect:
1 - BM_LOCKED there is a lock on the buffer header
2 - BM_DIRTY dirty
3 - BM_VALID block is not damaged
4 - BM_TAG_VALID block exists in file on disk
5 - BM_IO_IN_PROGRESS buffer is in the process of filling an image from disk or writing to disk
6 - BM_IO_ERROR The previous I/O operation failed.
7 - BM_JUST_DIRTIED became dirty while writing to disk
8 - BM_PIN_COUNT_WAITER waits for pins to be released by other processes to lock the buffer for

modification
9 - BM_CHECKPOINT_NEEDED is marked by the checkpoint process for writing to disk
10 - BM_PERMANENT refers to the journaled object.
Some of these flags are used by bgwriter and checkpointer to track whether a block has changed

while it is being written to disk, since shared locks are set during the writing process (an I/O operation).
This speeds up the DBMS.
4) int wait_backend_pgprocno - the identifier of the process that is waiting for other processes to

remove the buffer pins (waiting for pincount 1)
If a process wants to work with a block, it looks for it in the buffer cache. If it finds it, it pins it. Multiple

processes can pin a buffer. If the process does not need the buffer, the process unpins it.
Pinning prevents a block in the buffer from being replaced by another block.
A process that wants to clear space in a block from rows that have gone beyond the database horizon

must wait until no other process is interested in the block in the buffer except itself, that is, the pincount
is set to one by itself.
5) int freeNext - reference to the number of the next free block. After the instance is launched,

while all buffers are free, it points to the next buffer in order . The logic of the linked list is used ("Linked
List").
6) LWLock content_lock - lightweight lock on the buffer contents
Lightweight buffer content_locks are set by processes for a short time. Two types: Exclusive and

Shared.

72Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

buffer descriptors
Buffer Descriptors

buffer pool (buffer cache)
shared_buffers

file in PGDATAfile in PGDATA

NUM_BUFFER_PARTITIONS=128

hash table
Shared Buffer Lookup Table

buf_id

BufferTag

pointers to the next free buffer, freeNext

• after the instance is started, while all buffers are
free, freeNext points to the next buffer in order.

Memory structures that support the buffer cache

k

4Kb8Kb
clean

8Kb
dirty

8Kb 8Kb8Kb 8Kb8Kb8Kb
free

8Kb 8Kb

8Kb 8Kb 8Kb 8Kb 8Kb

64b 64 64 6464 64 6464 64 64

128 BufStrategyControl

v
30
b

1

2

128

...

Search for a free buffer

If a process wants to work with a block, it looks for it in the buffer cache. If it finds it, it pins it. Several
processes can simultaneously pin a buffer. If the process does not need the buffer, the process
removes the pin. Pinning prevents the block from being replaced in the buffer by another block.
Buffer Strategy Status size: BufferStrategyControl = 128 . Stores data for searching for

free blocks:
slock_t buffer_strategy_lock; Spinlock - to access this structure
pg_atomic_uint32 nextVictimBuffer; counter for searching for free buffers, pointer to next free

buffer is obtained by modulo division by NBuffers
int firstFreeBuffer; the first unused (after instance restart) buffer, after all buffers are used, will

take the value -1.
int lastFreeBuffer;
uint32 completePasses; used for statistics
pg_atomic_uint32 numBufferAllocs; used for statistics
int bgwprocno; bgwriter process number to notify
The word "strategy" is used in the sense of "method" from the phrase "buffer cache replacement

strategy".
Buffers may be returned to the free list and the free buffer chain may be extended and even recreated

after firstFreeBuffer has become -1 . This happens after deleting an object, or when deleting an
individual file of an object, or truncating the file (including by vacuum), or when deleting a database.
One block cannot be in two or more buffers, it can only be in one buffer .

73Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

HTAB

pointers to the next free buffer, freeNext

• If a process wants to work with a block, it looks for it in the buffer
cache. If it finds it, it pins it. Multiple processes can pin a buffer. If
the process does not need the buffer, the process unpins it.

• Pinning prevents a block in the buffer from being replaced by
another block.

• buffers can be returned to the free list. Normally the free list is
empty

Search for a free buffer

k

128 BufStrategyControl

v

1

2

128

...

buf_id

4Kb8Kb
clean

8Kb
dirty

8Kb 8Kb8Kb 8Kb8Kb8Kb
free

8Kb 8Kb

64b 64 64 6464 64 6464 64 64

Dirty Buffer Eviction Algorithm

Checkpoint BufferIds size: NBuffers*(CkptSortItem=20) 320Kb if the buffer pool is 128Mb.
Memory allocated with a reserve for sorting dirty buffers that will be written to disk by checkpoint. The
checkpointer process sorts dirty blocks separately for each file before sending them for writing . If the
file is on the HDD, this reduces the movement of the HDD heads.
The command to write to disk is sent via checkpoint_flush_after blocks (from 0 to 2MB, default

256KB), bgwriter_flush_after =512KB, wal_writer_flush_after =1MB
Checkpointer Data size: CheckpointerShmemSize() = 524416
Buffer IO Condition Variables NBuffers * (ConditionVariableMinimallyPadded = 16)

flags (variables) that put the process to sleep and wake it up if the flag changes. Implement the wait
method.
Shared Buffer Lookup Table , formerly known as Buffer Mapping Table . The third most

important and second largest structure. Unlike other structures, it is a hash table. Not the most optimal
(no range search), but acceptable.
Dimensions of nine structures, including Shared Buffer Lookup (Mapping)Table in
pg_shmem_allocations are incorrect. You can estimate the size of the structures by the off column
(offset) from the neighboring structure:
select * from (select *, lead(off) over(order by off) - off as true_size from
pg_shmem_allocations) as a where a.true<>a.allocated_size order by 1;
name | off | size | allocated_size | true_size
----------------------------+-----------+------+----------------+---------
...
Shared Buffer Lookup Table | 141706624 | 2896 | 2944 | 928640

In the example, the size is 928640 bytes for a buffer cache size of 128 MB.

74Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

select * from (select *, lead(off) over(order by off) - off as true from
pg_shmem_allocations) as a where a.name like 'Buf%' or a.name like 'Check%' or
a.name like '%Lookup%'order by 1;

name | off | size | allocated_size | true
-------------------------------+-----------+-----------+----------------+----------
Buffer Blocks | 6779776 | 134221824 | 134221824 | 134221824
Buffer Descriptors | 5731200 | 1048576 | 1048576 | 1048576
Buffer IO Condition Variables | 141001600 | 262144 | 262144 | 262144
Buffer Strategy Status | 142520064 | 28 | 128 | 128
Checkpoint BufferIds | 141263744 | 327680 | 327680 | 327680
Checkpointer Data | 146945664 | 524344 | 524416 | 524416
Shared Buffer Lookup Table | 141591424 | 2896 | 2944 | 928640
(7 rows)

HTAB

• the checkpointer process sorts dirty blocks separately for each file
before sending them for writing

Dirty Buffer Eviction Algorithm

k

128 BufStrategyControl

v

1

2

128

...

Buffer IO Condition Variables

Checkpointer Data

Checkpoint BufferIds

buf_id

4Kb8Kb
clean

8Kb
dirty

8Kb 8Kb8Kb 8Kb8Kb8Kb
free

8Kb 8Kb

64b 64 64 6464 64 6464 64 64

Buffer Replacement Strategies

The number of records in BufTable is the sum of NBuffers and NUM_BUFFER_PARTITIONS due to the
specifics of block handle initialization. For efficiency, the BufferAlloc() function, when loading a block
into a buffer that was occupied by another block, first inserts a record with a reference to the new
block handle into BufTable and only then frees the record in BufTable with a reference to the old block
handle. To avoid a situation where there is no room in BufTable to insert a reference to the new block
handle (which is difficult to process), additional space is immediately added to the table. Since parallel
work with the BufTable contents is limited by the number of partitions, the space for spare records is
allocated in the number of partitions, the number of which is set by the NUM_BUFFER_PARTITIONS
macro and is equal to 128.
Methods (Buffer Access StrategyType) for replacing blocks in the buffer ring:
1) BAS _BULKREAD. For sequential reading of table blocks (Seq Scan), a set of buffers in the 256K

buffer cache is used. The size is chosen so that these buffers fit into the second-level cache (L2) of the
processor core. The ring should not be too small to fit all the buffers pinned by the process. Also, in
case other processes want to scan the same data, the size should provide a "gap" so that the
processes synchronize and simultaneously pin, scan, and unpin the same blocks. This method can also
be used by commands that dirty buffers. Also, other processes can dirty buffers while they are in the
reader's buffer ring, since a block can only be in one buffer . If a buffer becomes dirty, it is excluded
from the buffer ring.
being scanned must be larger than a quarter of the buffer cache:
scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
The method is used when creating a new database using the WAL_LOG method to read the pg_class

table of the original database. Buffer rings are not used for TOAST tables, since TOAST is always
accessed via the TOAST index.
2) BAS_VACUUM. Dirty pages are not removed from the ring, but sent for writing. The ring size is set

by the vacuum_buffer_usage_limit configuration parameter . By default, 256Kb.
3) BAS_BULKWRITE. Used by COPY, CREATE TABLE AS SELECT commands. Ring size is 16MB. When

copying (RelationCopyStorageUsingBuffer(...)) a table, two rings are used : one for reading the source
table and one for filling the target table.

75Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the number of entries in BufTable is the sum of NBuffers and
NUM_BUFFER_PARTITIONS

• buffer cache replacement strategy:
› BULKREAD. For sequential reading of table blocks (Seq Scan) whose size is

not less than 1/4 of the buffer cache, a set of buffers in the buffer cache with a
size of 256 KB is used.

› VACUUM. Dirty pages are not removed from the ring, but sent for writing. The
ring size is set by the vacuum_buffer_usage_limit configuration
parameter . By default, 256K.

› BULKWRITE. Used by COPY and CREATE TABLE AS SELECT commands. Ring
size is 16MB.

• in a buffer cache a block can only be in one buffer
• If a buffer becomes dirty, it is excluded from the buffer ring.

Buffer Replacement Strategies

Finding a block in the buffer cache

The process needs to operate on the block. Process:
1) creates an instance of the BufferTag structure in its local memory.
2) calculates the hash using the uint32 function newHash = BufTableHashCode(BufferTag)
3) determines the partition number based on the hash value newPartitionLock =
BufMappingPartitionLock(newHash)
4) requests a lightweight (LWLock) lock of the BufMappingLock type on the hash table partition

into which the hash has fallen
3) calls the BufTableLookup(BufferTag, uint32 hashcode) function , which returns the

sequence number of the block in the buffer cache of type int or -1 if the block is not in the cache.
The size of a record (hash bucket slot) in the Shared Buffer Lookup Table is 8 bytes, it consists

of a hash (type uint32, unsigned integer of size 4 bytes) and the sequence number of the buffer (its
header) of type int.
The number of blocks may be greater than the number of buffers, and the hash from different blocks

may coincide. In this case, records with the same key value are inserted into the table, but with
references to different buffers (cache chains).
The table is divided into NUM_BUFFER_PARTITIONS=128 parts. One process can get locks on several

parts, even on all parts. The lock is not held for long: the buffer header is read by the buffer number in
the record without locks (Buffer Descriptors), the refcount (aka ref_count, 18 bits), usage_count
(4 bits) are increased by an atomic operation (pg_atomic_read_u32(&buf->state)), which are
stored with flags (10 bits) in 4 bytes. LWLock:BufMappingLock is immediately released and only then
LWLock:content_lock is set in the buffer header, which provides access to the buffer and the rest of
the header contents.

76Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Instance process:
• creates an instance of the BufferTag structure in its local memory
• computes a 4-byte hash from BufferTag
• the Shared Buffer Lookup Table hash table based on the hash

value
• requests a lightweight (LWLock) lock of type BufMappingLock on the

table partition that contains the hash value
• in the hash table finds the block sequence number in the buffer cache

or -1 if the block is not in the cache

Finding a block in the buffer cache

Pinning the buffer (pin) and locking content_lock

A pin can be held for a long time and is used to ensure that a block in the buffer is not replaced by
another. To read or change the contents of a block in the buffer, a lightweight content_lock is needed ,
a reference to which is stored in the Buffer Descriptors block descriptor . The size of each
block descriptor is 64 bytes (aligned). This lock must be held for a short time, unlike the pin.
1. To access the lines and their headers in the block, the following are set: pin and content_lock

(Exclusive or Shared depending on the intentions of the process).
2. After finding the necessary lines, content_lock can be removed, but the pin will not be removed, and

in this mode the process will be able to read the block lines that it saw while the process had
content_lock.
3. To add a new row to a block or change xmin, xmax of existing rows, a process must obtain a

content_lock of the Exclusive type. With Exclusive, no one can have a Shared content_lock and,
accordingly, see new rows that are in the process of being changed. Old rows can continue to be read,
since they are not changing anyway: they cannot be cleared or frozen due to the event horizon
retention.
4. If the process has pin and Shared content_lock, it can change some bits in t_infomask, in particular

the commit/rollback status. These bits can even be lost, in which case the process will simply recheck
the transaction status. It is not allowed to change the bits and xmin that relate to freezing, for this you
need Exclusive content_lock and such changes are logged. And what about checksums? When
changing any bits, the checksum will be different, but the checksum changes before writing the block
to disk.
5. To remove the space occupied by the string (HOT cleanup or vacuum) after pin and Exclusive, the

process waits for other processes to have no pin (i.e. pincount=1). After reaching pincount=1 (and
getting Exclusive if it was removed), you can free up space. It is interesting that other processes can
increase pincount (pin the block, showing the intention to work with its contents, because they cannot
load the block into another buffer), since due to Exclusive they will not be able to set Shared, which is
needed to look into the block.
If pincount>1, then (auto)vacuum writes itself into the block descriptor field waiting for pincount 1 ,

removes Exclusive and waits. HOT cleanup does not wait. There can only be one waiting, but this is
normal, since only one vacuum process can clean the table.

77Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pinning is used to ensure that a block in the buffer is not replaced by
another

• to read or change the contents of a block in a buffer, a lightweight
content_lock is required, a reference to which is stored in the Buffer
Descriptors block descriptor

• the lock must be held for a short time, unlike the pin
• to remove the space occupied by the string (HOT cleanup or vacuum)

after pin and Exclusive the process waits until other processes do not
have pin (i.e. pincount=1)

• to add a new row to a block or change xmin, xmax of existing rows, a
process must obtain a content_lock of type Exclusive

• if a process has a pin and Shared content_lock, it can change some bits
in t_infomask, in particular the commit/rollback status

Pinning the buffer (pin) and locking content_lock

Freeing buffers when deleting files

When a database is dropped, a full scan of all buffer descriptors (BufferDesc) is performed to find
buffers that belong to database files. If the header indicates that the buffer does not belong to a
database, it is skipped. If it does belong, a SpinLock is set on the buffer descriptor, the descriptor is
released, and the SpinLock is released.
A full scan is also performed if the size of the relation being deleted is greater than 1/32 of the buffer

pool :
#define BUF_DROP_FULL_SCAN_THRESHOLD (uint64) (NBuffers / 32)
In other cases (deletion, truncation of files) the search for buffers is performed by range and using a

hash table, which is also not fast . Files can be deleted and truncated by vacuum, DROP, TRUNCATE
command over permanent objects. Temporary objects do not store blocks in the buffer cache.
When the buffer pool size is large, the duration of these operations can be significant.
Speed of creating and deleting a small table using commands:
begin transaction;
create table x(id int);
insert into x values (1);
drop table x;
commit;
pgbench --file=CreateAndDrop.sql -j 1 -c 1 -T 10
TPS для shared_pool без Huge Pages (HP) размером 128MB - 433
1GB 367
4GB 220
8GB 123
16GB 43
18GB 32
The time to search for buffer descriptors in the hash table when deleting a small table increases 10 times

when the buffer pool increases from 1 GB to 16 GB . Using Huge Pages does not change the speed
significantly, since the buffer pool is not scanned.

78Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Freeing buffers when deleting files

• When deleting a database, a full scan of all buffer descriptors is
performed

• A full descriptor scan is performed if the size of the relation being
deleted is greater than 1/32 of the buffer pool

• in other cases, the search for descriptors is done through a hash table
• when increasing the buffer cache from 1GB to 16GB, the time to search

for buffers when deleting a table increases by an order of magnitude
• search is performed when files are deleted as a result of DROP,

TRUNCATE and vacuum (unless file truncation is disabled)

pgbench --file=CreateAndDrop.sql -j 1 -c 1 -T 10
TPS for HP 128MB 417
TPS for HP 1GB 375
TPS for HP 4GB 227
TPS для HP 8GB 127
TPS для HP 16GB 55
TPS для HP 18GB 33

create table x(id int);
insert into x values (1);
drop table x;

CreateAdndDrop.sql:

bgwriter background writing process

Dirty buffers can be written to disk ("cleaned", by clearing the BM_DIRTY flag) by processes working
with the buffer cache, including checkpointer, bgwriter, server processes, and autovacuum worker
processes. The bgwriter process writes dirty buffers and marks them as clean. The bgwriter
reduces the likelihood that server processes will encounter dirty blocks when searching for a candidate
buffer (victim) for eviction to replace with another block. When evicting a dirty block from a buffer,
there is no access to the I/O bus, this is a copy from memory (buffer) to memory (Linux page cache).
Delays are not as critical as it may seem. The bgwriter, walwriter, bgworker processes have
similar names, but they are different processes. The bgwriter process is configured by
the following parameters:
select name, setting, context, max_val, min_val from pg_settings where name ~ 'bgwr';

name | setting | context | max_val | min_val
-------------------------+---------+---------+------------+---------
bgwriter_delay | 200 | sighup | 10000 | 10
bgwriter_flush_after | 64 | sighup | 256 | 0
bgwriter_lru_maxpages | 100 | sighup | 1073741823 | 0
bgwriter_lru_multiplier | 2 | sighup | 10 | 0
bgwriter_delay - how many milliseconds bgwriter sleeps between iterations.
bgwriter_flush_after - the number of blocks after sending for writing which the flush of the linux
page cache is initiated. Zero disables flush.
The number of dirty buffers written in an iteration depends on how many blocks server processes

have loaded into the buffer cache ("recent_alloc") in previous cycles. The average value is multiplied
by bgwriter_lru_multiplier and specifies how many buffers need to be flushed in the current
cycle. The process with the fastest speed tries to reach this value, but not more than
bgwriter_lru_maxpages . bgwriter_lru_maxpages - the maximum number of blocks that are
written in one iteration, at zero value bgwriter stops working. Based on this, it makes sense to set
bgwriter_lru_maxpages to the maximum value.
What if the server processes did not use new buffers in previous iterations? To avoid "slow start", the

iteration will scan at least:
NBuffers/120000*bgwriter_delay+reusable_buffers_est blocks.
For a buffer cache size of 128 MB and 200 milliseconds of latency, this would be 27
+reusable_buffers_est blocks.

79Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The bgwriter process writes back dirty buffers and marks them as clean
• bgwriter reduces the likelihood that processes will encounter dirty

blocks when searching for a candidate buffer (victim) for eviction to
replace with another block

• "searching for a free block" is usually a candidate buffer for evicting
from a block buffer, since all buffers are usually occupied and the free
block list is empty

• when displacing a dirty block from the buffer, there is no access to the
I/O bus, this is a "writeback": copying from memory (buffer) to memory
(linux page cache)

bgwriter background writing process

select name, setting, context, max_val, min_val from pg_settings where name ~ 'bgwr';
name | setting | context | max_val | min_val

-------------------------+---------+---------+------------+---------
bgwriter_delay | 200 | sighup | 10000 | 10
bgwriter_flush_after | 64 | sighup | 256 | 0
bgwriter_lru_maxpages | 100 | sighup | 1073741823 | 0
bgwriter_lru_multiplier | 2 | sighup | 10 | 0

Clearing the buffer cache by the bgwriter process

The block is written by the SyncOneBuffer(..) function. First, a spin lock is taken on the block
descriptor and the BM_LOCKED bit is set. The following values are checked: refcount=0 (the block is
not needed by processes), usage_count=0 (falls into the gradation of long unused), BM_DIRTY bit=1
(dirty), BM_VALID=1 and if the values are not as given, the spin lock is released and the block is not
flushed to disk. Otherwise, the buffer is pinned, a lightweight shared lock is taken, the function of
transferring the buffer to the Linux page cache is called, the lock and pin are released.
During the process of flushing the buffer, other processes may have time to lock and pin the buffer,

change the hint bits that are allowed to be changed with the Shared lock and pin.
The LSN is read from the block in the buffer and the XLogFlush(XLogRecPtr record) function is

executed, flushing the WAL buffer contents up to this LSN. This ensures the Write Ahead logic - the log
with changes to the block must be written before the block itself.
If checksum calculation is enabled, the buffer contents are copied to the local memory of the bgwriter

process by the memcpy() system call . The checksum is calculated on the local copy and this 8Kb
copy is passed to the Linux kernel code, which places the block as two 4Kb pages in the Linux page
cache.
Why is it copied to local memory? Because other processes in the block can change the hint bits

(infomask) while bgwriter is calculating the checksum, and the checksum will be incorrect even if one
bit is changed. Therefore, to calculate the checksum, the block is copied to local memory. Some
performance reduction when checksum calculation is enabled is associated with copying from memory
to memory, and not with the load on the processor's computing power.
A set of flags (BM_JUST_DIRTIED, BM_IO_IN_PROGRESS, BM_CHECKPOINT_NEEDED, BM_IO_ERROR)

are checked, which are used to track changes in the block during writing to disk. If the flags show that
"everything is clean" (other processes did not change the contents of the block), then the BM_DIRTY
flag is removed from the buffer descriptor and the buffer becomes "clean" and the block descriptor
lock is released.
Since long unused (usage_count=0 and refcount=0) buffers are flushed, the probability that the block

will be needed by another process; that there will be waits for locks; that a write to WAL will be
required. The XLogFlush(XLogRecPtr record) function first checks that the LSN is less than the one
already written to WAL.
The buffer is not included in the free list, the buffer becomes clear.

80Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the buffer is not included in the free buffer list, the dirty
buffer becomes clean

• Only dirty, uncommitted blocks with usage_count=0 are
written to disk

• bgwriter does not change usage_count
• when checksum calculation is enabled, the block is copied

from the buffer cache to the local memory of the bgwriter
process and the checksum is calculated in the local memory
and stored in the block header

Clearing the buffer cache by the bgwriter process

Checkpoint

Performed by the checkpointer process. Checkpoints are performed: periodically, at the end of the
instance stop and start procedure, replica promotion, backup, checkpoint command, database creation.
Checkpoints are not initiated on the replica, but restart points are performed. In the event of an instance
crash and subsequent restart, the checkpoint algorithm must ensure that the log data starting from the
LSN of the beginning of a successfully completed checkpoint, i.e. written to pg_control (at the last
phase of execution), will be sufficient to restore the cluster. Checkpoints allow you to avoid storing
WAL segments that are not needed for recovery.
Properties of checkpoints that are reflected in the cluster log:
IS_SHUTDOWN (shutdown) stops an instance in fast or smart mode
END_OF_RECOVERY (end-of-recovery) is called by the startup process at the end of recovery.
IMMEDIATE (immediate) complete an already started (if any) checkpoint at maximum speed, ignoring

checkpoint_completion_target and immediately execute the checkpoint also at maximum speed
FORCE (force) even if there was no entry in WAL. Executed by checkpoint command, replica

promotion pg_promote(), instance shutdown
WAIT (wait) return control only after the checkpoint is completed
CAUSE_XLOG (wal) by max_wal_size parameter when switching WAL segment
CAUSE_TIME (time) by time specified by checkpoint_timeout parameter
FLUSH_ALL (flush-all) saves blocks of unlogged objects, set when creating a database using the

FILE_COPY method
Properties can be combined with each other. For example, the checkpoint command sets the

immediate force wait properties .

81Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• executes the checkpointer process:
› periodically after checkpoint_timeout
› by log growth max_wal_size
› at the end of the instance stop or start procedure
› promoting the replica
› commands checkpoint, create database
› when booking

Checkpoint

postgres=# checkpoint;
CHECKPOINT
LOG: checkpoint starting: immediate force wait
LOG: checkpoint complete: wrote 5 buffers (0.0%);

Steps to perform a checkpoint

When a checkpoint is executed, the following actions are performed.
If the instance is terminated, a status about the instance shutdown is written to the pg_control file

. The LSN of the next log entry is calculated. This will be the LSN of the checkpoint start, but
checkpointer does not create a separate log entry about the start.
Other processes may set the DELAY_CHKPT_START flag. A list of virtual transaction identifiers is

collected, the processes of which set the flag. If the list is not empty, then checkpointer waits for the
flags to be removed in a loop, sleeping for 10 milliseconds between checks for flag removal. Other
processes may set flags, but they do not matter, since they are set after the previously calculated LSN.
The flag is set for a short time: when the process performs a logically related action non-atomically:
creating different journal entries. For example, updating the transaction status in slru and creating a
journal entry about the commit.
Then checkpointer starts dumping slru buffers and other shared memory structures to disk using
CheckPointGuts(..) function into files that they cache and/or into WAL and synchronization is
performed on these files (fsync). These log records should be related to the checkpoint and should
come after its start LSN.
The algorithm for performing actions related to writing dirty blocks of the buffer cache is described in

the BufferSync(int flags) function :
Checkpoints of the IS_SHUTDOWN, END_OF_RECOVERY, FLUSH_ALL type write all dirty buffers,

including those related to non-logged objects. The checkpointer process runs through all buffer
descriptors in a loop, gets a SpinLock on one block at a time. Then it checks that the block is dirty and
sets the BM_CHECKPOINT_NEEDED flag for dirty blocks, saves the block address in the Checkpoint
BufferIds shared memory structure . Then it removes the SpinLock. The block address is the
traditional 5 numbers of the BufferTag structure .
If some process clears the buffer, this flag will be removed by the clearing process - it doesn't matter

which process writes the block, the main thing is that all dirty buffers that were dirty at the start of the
checkpoint are written to disk. Now the checkpointer has a list of blocks that it will write to disk.

82Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• If an instance is stopped, a status about the instance shutdown is
written to the pg_control file

• the LSN of the next log record is calculated. This will be the LSN of the
start of the checkpoint

• waiting for processes to remove the DELAY_CHKPT_START flag
• slru buffers and other shared memory structures are flushed to disk
• checkpointer runs through all buffer descriptors in a loop and sets the

BM_CHECKPOINT_NEEDED flag for dirty blocks, saves the block
address (5 numbers) in the Checkpoint BufferIds memory structure for
subsequent sorting

• after setting the flag checkpointer does not lock the buffer and the
block in the buffer can be flushed to disk and replaced with another

Steps to perform a checkpoint

Checkpoint Execution Steps (continued)

Next, checkpointer sorts the block identifiers using the standard quick sort algorithm. The comparison
is performed by the ckpt_buforder_comparator(..) function in the order: tblspc, relation, fork, block.
tblspc comes first, and this is significant. Sorting, in particular, is needed to avoid a situation where
blocks are sent to table spaces in order, loading one table space at a time. It is assumed that table
spaces are separately mounted file systems on different devices.
The number of blocks for each tablespace is calculated, and the size of the block set (slice) is

determined so that the write to all tablespaces ends up approximately the same.
checkpointer sends one block at a time from its list using SyncOneBuffer() with periodic delays

(according to the checkpoint_completion_target configuration parameter and the calculated
write speed) to the linux page cache.
If checkpoint_flush_after is not zero, then synchronization is performed on already sorted ranges of

blocks for each file. Combining sorted ranges of blocks (if any) for each file, checkpointer sends
system calls to linux to write ranges of blocks to the linux page cache, which were previously "sent to
disk" by processes.
For checkpoints (except for the one performed on instance shutdown), a snapshot with a list of active

transactions is saved in the WAL using the LogStandbySnapshot() function. This can be useful for
replicas when restoring from archive logs.
A log record is generated containing the LSN of the log record that was generated at the start of the

checkpoint. The generated log record c is sent to WAL by the fdatasync system call (or other method).
The LSN of the generated checkpoint end record is stored in pg_control. The checkpoint is complete .
Next, checkpointer checks whether replication slots need to be invalidated because the slot has not

been used for a long time. WAL segments that should not be retained are deleted. To restore the
instance, segments are needed starting with the segment containing the log record with the LSN of the
beginning of the checkpoint. New WAL segments are allocated or old ones are cleared and renamed
according to the configuration parameters.

83Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The stored block identifiers are sorted in the order: tblspc, relation,
fork, block

• blocks are sent one by one to the linux page cache
• If checkpoint_flush_after is not zero, then synchronization is performed

on already sorted ranges of blocks for each file.
• WAL stores a snapshot with a list of active transactions
• a checkpoint end log record is generated containing the LSN of the log

record that was generated at the start of the checkpoint
• pg_control file stores the LSN of the generated log record
• WAL segments that should not be retained are removed

Steps to perform a checkpoint

84Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

pg_flush_data()->
sync_file_range()

PrefetchSharedBuffer()

PHY_SEC_SIZE blocks

smgrwrite()

PageSetChecksumCopy()

server process

SlruPhysicalWritePage()
-> pg_pwrite()

Write and/or fsync
XLogWrite() -> pg_pwrite()

via PCIe bus

• 8K blocks are read into shared memory via page cache (4K blocks)
• blocks are written to disk via the page cache
• An optimized synchronization algorithm is used for recording

Interaction of instance processes with disk

SSD

~16Kb ~16Kb controller
SoC

DRAM n Gb
FTL

Linux Page Cache

4Kb 4Kb 4Kb 4Kb 4Kb 4Kb

buffer cache WAL cache SLRU caches

8Kb 8Kb 8Kb 8Kb 8Kb 8Kb8Kb 8Kb

checkpointer

8Kb

HTAB
hash_create("Pending Ops Table"..

Checkpointer Data

Interaction of instance processes with disk

To synchronize dirty buffers, the sync_file_range (fd, offset, nbytes,
SYNC_FILE_RANGE_WRITE) call is used . The posix_fadvise(fd, offset, nbytes,
POSIX_FADV_DONTNEED) call is not used by default, since it has a side effect - in addition to writing
changed pages, it removes both the changed and unchanged page from memory.
For each file, writeback calls are made on block ranges. References to blocks to be synchronized (in

the future) are written to a hash table of 100 blocks, created by hash_create("Pending Ops Table"
or " pending sync hash "..) in the local memory of the checkpointer, sorted by
sort_pending_writebacks(..) to arrange the blocks for transferring the block range. fsync() is executed
once for each file (where at least one block has changed) at the end of the checkpoint.
For synchronization, all files that have been modified since the last checkpoint must be remembered in

order to synchronize before the next checkpoint is completed. A hash table (not a linked list) is chosen
to eliminate duplication of commands (operations) to write the same block. Hash tables remember
blocks that need to be synchronized. For file deletion commands, a linked list is used, since there
should be no repeated file deletion commands (operations).
Processes submit operations to the checkpointer process through a shared memory structure
CheckpointerShmemStruct named "Checkpointer Data". The list of shared structures and their sizes
are available in the pg_shmem_allocations view .
Temporary tables are not synchronized because they do not require fault tolerance.

Practice

Transaction in psql
List of background processes
Buffer cache, EXPLAIN command
Pre-Record Log
Checkpoint
Disaster Recovery

85Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Transaction in psql
2. List of background processes
3. Buffer cache, EXPLAIN command
4. Pre-Record Log
5. Checkpoint
6. Disaster Recovery

Practice

86Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Multiversion

2b PostgreSQL Architecture

Row multiversioning

The table blocks store versions of rows, which are called tuples. The latter name comes from relational
theory, where tables are called relations, columns are called attributes, and column data types are
called domains.
When you create a table in PostgreSQL, a data type with the table name is automatically created, in

which the names and data types of the fields correspond to the names of the table columns and their
data types. The data type is called composite, since it consists of fields of other data types.
Queries (SELECT) must return data at a single point in time ("consistent"), which is called "read

consistency". While queries are running, rows can change and be deleted. To ensure read consistency,
old versions of rows must be stored. If a query does not find a row version at the point in time it needs,
it will fail with the error "snapshot too old". All row versions are physically stored in table files, if
possible, next to each other (in the same data file blocks).
The second reason why old row versions are saved is for transactions. A transaction can update a

row, generating a new row version. A transaction can be rolled back or committed. If a transaction is
committed, the old row version is not needed by the transaction. If a transaction is rolled back, the old
version is needed, but the new one is not needed. Therefore, all row versions generated in transactions
must be stored at least until their completion. A feature of PostgreSQL is that if a transaction is rolled
back, the row versions that it would have generated if it had been committed physically remain in the
blocks and take up space, and are not cleaned up during a rollback. Therefore, transaction rollback in
PostgreSQL is performed quickly. A rolled back (ROLLBACK) transaction is called aborted.
Storing row versions is called Multi-Version Concurrency Control (MVCC).

87Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The table blocks store versions of rows, which are called
tuples.

• Queries (SELECT) must return data at one point in time
("consistent"), which is called "read consistency"

• All row versions are physically stored in table files as close to
each other as possible (in the same data file blocks)

Row multiversioning

id co1 col2 col3

1 a b c

2 b c a

tuple , string,
string version
(synonyms)

Tables

Application data is stored in tables. The DBMS has regular tables (heap tables, rows are stored in an
unordered manner), unlogged, temporary, partitioned. Extensions can create new ways of storing data
and methods of accessing them. The Tantor Postgres SE DBMS has the pg_columnar extension .
The number and order of columns are specified when the table is created. Each column has a name.

After the table is created, you can use the ALTER TABLE command to add and remove columns. When
you add a column, it is added after all existing columns.
The fields for the added column have NULL values by default or are given values specified by the

DEFAULT option. When adding a column, new row versions will not be generated if DEFAULT is set to a
static value. If the value uses a volatile function, such as now() , then when adding a column, all rows
in the table will be updated, which is slow. In this case, it may be more optimal to first add the column
without specifying DEFAULT, then update the rows with UPDATE commands setting the value for the
added column, then set the DEFAULT value with the ALTER TABLE command table ALTER COLUMN
column SET DEFAULT value;
Deleting a column deletes the values in the fields of each row and the integrity constraints that include

the deleted column. If the integrity constraint being deleted is referenced by a FOREIGN KEY, you can
delete it in advance or use the CASCADE option.
You can also change the column type using the ALTER TABLE command table ALTER COLUMN

column TYPE type(dimension);
You can change the type if all existing (non-NULL) values in the rows can be implicitly cast to the new

type or dimension. If there is no implicit cast and you do not want to create one or set it as the default
data type cast, you can specify the USING option and set how to get new values from existing ones.
The DEFAULT value (if defined) and any integrity constraints that the column is a part of will be

converted. It is better to remove integrity constraints before modifying the column type and add the
constraints later.
To view the contents of a block, the functions of the standard pageinpect extension are used.
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-alter.html

88Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• an object in which data is stored
• several types: regular tables (heap tables, rows are stored in

an unordered manner), unlogged, temporary, partitioned
• Extensions can create new ways to store data and access it
• the number and order of columns are specified when

creating a table
• After creating a table, you can add and remove columns.

When adding a column, it is added last - after all existing
columns

• you can change the column type

Tables

Service columns

When accessing table rows in SQL commands, you can use pseudocolumn names (service, system,
virtual). Their set depends on the table type. For regular (heap) tables, the following pseudocolumns
are available:
ctid is the address of the physical location of the row. Using ctid, the scheduler can access a

page (block of the primary layer file) of the table without a full scan of all pages. ctid will change if the
row is physically moved to a different block.
tableoid - the oid of the table that physically contains the row. Values are meaningful for partitioned

and inherited tables. A quick way to find out the oid of a table, as it corresponds to pg_class.oid .
xmin - the transaction number (xid) that created the row version.
xmax - the transaction number (xid) that deleted or attempted (the transaction was not committed for

any reason: rollback was called, the server process was interrupted) to delete a row.
cmin is the zero-based sequence number of the command within the transaction that created the

row version. Has no application.
cmax is the sequence number of the command within the transaction, starting from zero, that

deletes or attempted to delete a row. To support "crooked" code, when the same row is updated
several times in one transaction.
xmin, cmin, xmax, cmax are stored in three physical fields of the row header. xmin and xmax are

stored in separate fields. cmin, cmax, xvac (VACUUM FULL was used before PostgreSQL version 9)
in one physical field. cmin and cmax are interesting only during the life cycle of a transaction for
insertion (cmin) and deletion (cmax). ctid is calculated based on the row address. Physically, the
row version has t_ctid , which stores the address of the next (created as a result of UPDATE) row
version. Moreover, this is not a "chain", the connection can be lost, since vacuum can delete a newer
row version earlier than the old one (the block was processed earlier) and the old row version will refer
to the missing version. If the version is the latest, t_ctid stores the address of this version. For
partitioned tables, if the UPDATE resulted in the new version moving to another partition (the value of
the column included in the partition key changed), a special value is set. Also, during the INSERT
process, a "speculative insertion token" may be temporarily set instead of the row version address.
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-system-columns.html

89Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• xmin - transaction number (xid) that created the row version
• xmax - transaction number (xid) that deleted or attempted

(transaction was not committed for any reason: rollback was
called, server process was interrupted) to delete a row or zero

• ctid address of the physical location of the row
• tableoid - the oid of the table that physically contains the row.

Values are meaningful for partitioned and inherited tables
• cmin is the zero-based sequence number of the command

within the transaction that created the row version
• cmax is the zero-based sequence number of the command

within the transaction that deleted or attempted to delete the row

Service columns

Data block structure

The structure of the heap table block is given. The block size is 8Kb. At the beginning of the block
there is a service structure of a fixed size of 24 bytes. They contain: LSN indicating the beginning of
the log record following the log record of which the block was changed. This LSN is needed so that the
block is not sent for writing if the log record has not been written to disk (implementation of the write
ahead log rule). It is also used for log recovery.
Tantor Postgres SE uses a 64-bit (8 bytes) transaction counter and at the end of a block of regular

tables there is a "special space" of 16 bytes , TOAST has 8 bytes . In PostgreSQL there is no special
area for tables, index blocks have one.
After the fixed area there are pointers (line pointers) to the beginning of records (lines) in this block

(itemid.h). For each line, 4 bytes are used for the pointer . Why so much? The pointer contains an
offset (" off set") in bytes to the beginning of the line (l p _ off 15 bits, line pointer off set), 2 bits (l p
_flags), 15 bits of the line length (l p _ len). Two bits indicate four possible statuses of the pointer: 1 -
points to the line, free, and two more statuses that implement HOT (heap only tuple) optimizations:
dead and redirect.
If the table has up to 8 columns inclusive, the row header size is 24 bytes. If the table has 9 or more

columns, then the size of the row header , if at least one field contains an empty value (NULL), becomes
32 bytes, and starting with 73 columns, the row header becomes 40 bytes.
Number of rows in a block, depending on the size of the data area in the row:
rows | size
------+-----
226 | 8
185 | 16
156 | 24
135 | 32
119 | 40
107 | 48
97 | 56

90Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

the size of any row and row header is a
multiple of 8 bytes

size is a multiple of 8 bytes
24 , 32... bytes

t_hoff
multiple of 8

• r

Data block structure

free space
block header 24 bytes

(lsn , checksum , lower ,
upper ...)

4 4 4

title
23 bytes

t_bits title
lines 23

data lines
lp_len

16

data lines
lp_len

title
23 bytes

there is no data in the row (all fields are
NULL)
bitmap (0=NULL) one bit per column

size is a multiple of 8 bytes

lp_off (beginning of line)

select * from page_header
(get_raw_page('t','main',0));
-[RECORD 1]---------
lsn | 0/110DCF10
checksum | 0
flags | 0
lower | 928
upper | 944
special | 8176
pagesize | 8192
version | 5
prune_xid | 0

lower upper

special

String version header

The row header has a size of 24, 32, ... bytes and is a multiple of 8 bytes. It stores t_hoff - the offset to
the beginning of the row data. At the end of the header there will be a bitmap t_bits (the size is a
multiple of a byte), if at least one field of the row is NULL. One bit - one column, 1 - NULL, 0 - the field
is not empty. The presence of the map (the presence of NULL in any field) is indicated by one of the
bits t_infomask. Example of creating the second version of the row:
create extension pageinspect;
create table t(n int, c text);
insert into t values (1, 'foo');
update t set c = null;
select * from heap_page_items(get_raw_page('t','main',0));
lp|lp_off|lp_flags|lp_len| xmin| xmax| ctid| infomask2| infomask| hoff| t_bits |
--+------+--------+------+-----+-----+------+----------+---------+------+--------+
1| 8144| 1| 32| 333| 334| (0,2)| 16386| 258 | 24 | |
2 | 8112| 1| 28 | 334| 0| (0, 2)| 32770| 1024 1 | 24 | 10000000 |

lp_off offset to the beginning of the string, with byte precision.
lp_len string length
The size of the row header is always a multiple of 8 bytes (aligned to 8 bytes) and can occupy 24, 32,

40 bytes. The size of the entire row (header + data) is also always a multiple of 8 bytes. For alignment,
empty bytes (0x0000) are added to the end.

91Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• xmin - xid of the transaction that created the row version
• xmax - xid of the transaction that deleted the row version
• ctid - a link to the next version of this line
• bits - bitmap of empty values
• hoff - offset to the beginning of the line data
• lp_off offset to the beginning of the line

String version header

select * from heap_page_items(get_raw_page('t','main',0));
lp| lp_off |lp_flags| lp_len |t_xmin|t_xmax|t_field3|t_ctid|t_infomask2|t_infomask| t_hoff | t_bits |t_oid
--+------+--------+------+------+------+--------+------+-----------+----------+------+--------+-----
1| 8144| 1| 32| 333| 334| 0 | (0,2)| 16386| 258 | 24 | |
2| 8112| 1| 28| 334| 0| 0 | (0,2)| 32770| 10241 | 24 |10000000|

pad
xmi
n

333

infomask2
0100000000000010

xmax
334

fiel
d3
0

ctid
(0.2
)

infomask
0000000100000010

hoff
24

string data
\x0100000009666f6f

padxmin
334

infomask2
1000000000000010

xmax
0

fiel
d3
0

ctid
(0.2)

infomask
001010000000000 1

hoff
24

bits
10000000

string data
\x01000000

Вставка строки

Пример вставки строки:
create extension pageinspect;
create table t (n int, c text);
insert into t values (1, 'foo');
select * from heap_page_items(get_raw_page('t','main',0));
lp|lp_off|lp_flags|lp_len| xmin| xmax| ctid| infomask2| infomask|t_hoff| t_bits |
--+------+--------+------+-----+-----+-----+----------+---------+------+--------+
1| 8144| 1| 32| 333| 0|(0,1)| 2 | 2050 | 24 | |
select * from t;
n | c
---+-----
1 | foo
(1 row)
select * from heap_page_items(get_raw_page('t','main',0));
lp|lp_off|lp_flags|lp_len| xmin| xmax| ctid| infomask2| infomask|t_hoff| t_bits |
--+------+--------+------+-----+-----+-----+----------+---------+------+--------+
1 | 8144| 1| 32| 333| 0|(0, 1)| 2 | 2306 | 24 | |

ctid is a system column that indicates the physical location of a row in a table block.
It consists of two numbers: (block_number, line_pointer), where block_number is the block number

starting from zero, and line_pointer is the pointer number in the header of this block. btree indexes in
leaf blocks store pointers to row versions as ctid. The analogue in Oracle Database is the service
column (pseudo column) ROWID, but it is unique within the entire database.
The transaction that inserted the row does not mark in infomask that it was committed. This will be

done when the row is subsequently accessed by another transaction or by another query. If the ninth
bit is set, it means that the transaction that inserted the row (xmin) was committed .

92Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• xmin - xid of the transaction that inserted the row
• xmax -zero
• ctid - self reference
• the transaction that inserted the row does not mark it in infomask

as committed. This will be done when the row is subsequently
accessed by another transaction or another query

Insert row

select * from heap_page_items(get_raw_page('t','main',0));
lp| lp_off |lp_flags|lp_len|t_xmin|t_xmax|t_field3|t_ctid|t_infomask2|t_infomask| t_hoff | t_bits |t_oid
--+-------+--------+------+------+---------------+------+-----------+----------+------+--------+-------+----

1 | 8144| 1| 32| 333| 0| 0 | (0, 1)| 2 | 2050 | 24 | |

pad
xmi
n

333

infomask2
000000000000010

xmax
0

fiel
d3
0

ctid
(0,1
)

infomask
0000100 0 00000010

hoff
24

string data
\x0100000009666f6f

Insert row

Example of creating a second version of a row as a result of an update:
update t set c = null;
select * from heap_page_items(get_raw_page('t','main',0));
lp|lp_off|lp_flags|lp_len| xmin| xmax| ctid| infomask2| infomask|t_hoff| t_bits |
--+------+--------+------+-----+-----+-----+----------+---------+------+--------+
1| 8144| 1| 32| 333| 334|(0,2)| 16386| 258 | 24 | |
2| 8112| 1| 28| 334| 0|(0,2)| 32770| 10241 | 24 |10000000|

When inserting, a second version of the row appears. The data area of the second version includes all
fields after the update, i.e. field values may be duplicated.
The ctid of the previous version points to the address of the new version of the row. The ctid of the

current version of the row points to itself.
The xmax of the previous version is changed from zero to the transaction number that created the

new row version.
If the transaction that performed the UPDATE is not committed, then the server processes of other

sessions see all versions of the row, but they check that the second version in infomask does not have
bits indicating that the transaction is committed or rolled back, and they access the CLOG structure in
shared memory to check the transaction status. There they will see that the transaction is not
committed or rolled back, but the process exists. Based on this, they will understand that the second
version of the row cannot be issued (otherwise there will be a "dirty read") and return the first version
of the row, also checking the transaction status. The status of the transaction (xmin committed) that
created the first version of the row is already set in bit 9 of infomask.
infomask bits:
1 bit - there are empty values, 2 bits - there are variable-width fields, 3 - there are fields moved to

TOAST, 4 - there are fields of the OID type, 5 - the row is locked in key-share mode, 9 - xmin
committed, 10 - xmin aborted, 11 - xmax committed, 12 - xmax aborted , 13 - in xmax multitransaction, 14
- the current version of the row .
infomask2 bits:
from 1 to 11 bits - the number of fields in the row, 14 - key fields changed or the row deleted, 15 - Heap

Hot Updated , 16 - Heap Only Tuple .

93Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• ctid of the previous version points to the address of the new
version of the line

• ctid of the current version of the line points to itself
• xmax of the previous version is changed from zero to the

transaction number that created the new row version

Update line

select * from heap_page_items(get_raw_page('t','main',0));
lp| lp_off |lp_flags|lp_len|t_xmin|t_xmax|t_field3|t_ctid|t_infomask2|t_infomask| t_hoff | t_bits |t_oid
--+------+--------+------+------+------+--------+------+-----------+----------+------+--------+-----
1| 8144| 1| 32| 333| 334| 0 | (0,2)| 16386| 258 | 24 | |
2| 8112| 1| 28| 334| 0| 0 | (0,2)| 32770| 10241 | 24 |10000000|

pad
xmi
n

333

infomask2
0100000000000010

xmax
334

fiel
d3
0

ctid
(0,2
)

infomask
0000000100000010

hoff
24

данные строки
\x0100000009666f6f

padxmin
334

infomask2
1000000000000010

xmax
0

fiel
d3
0

ctid
(0,2)

infomask
0010100000000001

hoff
24

bits
10000000

data lines
\x01000000

Delete line

Example of deletion:
delete from t;
select * from heap_page_items(get_raw_page('t','main',0));
lp| lp_off |lp_fla gs|lp_len| xmin| xmax| ctid| infomask2| infomask| t_hoff | t_bits |
--+------+--------+------+-----+-----+-----+----------+---------+--------+--------+
1 | 8144| 1| 32| 333| 334|(0, 2)| 16386| 1282 | 24 | |
2| 8112| 1| 28| 334| 335|(0,2)| 40962| 8449 | 24 |10000000|
select * from t;
n | c
---+---
(0 rows)
select * from heap_page_items(get_raw_page('t','main',0));
lp|lp_off|lp_flags|lp_len| xmin| xmax| ctid| infomask2| infomask|t_hoff| t_bits |
--+------+--------+------+-----+-----+-----+----------+---------+------+--------+
1 | 8144| 1| 32| 333| 334|(0, 2)| 16386| 1282 | 24 | |
2 | 8112| 1| 28| 334| 335|(0, 2)| 40962| 9473 | 24 | 10000000 |

If the line deletion had not been committed but rolled back, then after rereading the line, the infomask
of the second version of the line would have been set to 10497 instead of 9473 (xmax aborted). After
the rollback and vacuum:
select * from heap_page_items(get_raw_page('t','main',0));
lp|lp_off|lp_flags|lp_len| xmin| xmax| ctid| infomask2| infomask|t_hoff| t_bits |
--+------+--------+------+-----+-----+-----+----------+---------+------+--------+
1| 2| 2| 0| | | | | | | |
2| 8144| 1| 28| 334| 335|(0,2)| 40962| 10497 | 24 |10000000|

The first version of the string is freed, the second version of the string is moved to the end of the
block. The second pointer points to the string.

94Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• xmax of the current row version (xmax=0) is set to xid of the
deleting transaction

Delete line

select * from heap_page_items(get_raw_page('t','main',0));
lp| lp_off |lp_flags|lp_len|t_xmin|t_xmax|t_field3|t_ctid|t_infomask2|t_infomask| t_hoff | t_bits |t_oid
--+------+--------+------+------+------+--------+------+-----------+----------+------+--------+-----
1| 8144| 1| 32| 333| 334| 0 | (0,2)| 16386| 1282 | 24 | |
2| 8112| 1| 28| 334| 335| 0 | (0,2)| 40962| 8449 | 24 |10000000|

pad
xmi
n

333

infomask2
0100000000000010

xmax
334

fiel
d3
0

ctid
(0.2
)

infomask
0000000 1 00000010

hoff
24

string data
\x0100000009666f6f

padxmin
334

infomask2
1000000000000010

xmax
335

fiel
d3
0

ctid
(0.2)

infomask
001010000000000 1

hoff
24

bits
10000000

string data
\x01000000

Smallest data types: boolean, "char", char, smallint

The list of data types and their characteristics can be found in the pg_type table:
select typname, typalign, typstorage, typcategory, typlen from pg_type where
typtype='b' and typcategory<>'A' order by typlen,typalign,typname;
The boolean type takes 1 byte. The "char" type also takes 1 byte, but stores ASCII characters.
You can confuse "char" with char (synonymous with character(1) or char(1)). char takes up 2 bytes

instead of 1, but stores characters in the database encoding, which means more characters than in
ASCII:
drop table if exists t5;
create table t5(c1 "char" default '1');
insert into t5 values(default);
select lp_off, lp_len, t_hoff, t_data from
heap_page_items(get_raw_page('t5','main',0)) order by lp_off;
lp_off | lp_len | t_hoff | t_data
--------+--------+--------+--------

8144 | 25 | 24 | \x31
drop table if exists t5;
create table t5(c1 char default '1');
insert into t5 values(default);
select lp_off, lp_len, t_hoff, t_data from
heap_page_items(get_raw_page('t5','main',0)) order by lp_off;
lp_off | lp_len | t_hoff | t_data
--------+--------+--------+--------

8144 | 26 | 24 | \x0531
"char" takes 1 byte, and char 2 bytes. Why is lp_off (start of line) the same ? Because there is

alignment of the entire line by 8 bytes and you need to remember about it. "char" is intended for use in
system catalog tables, but can be used in regular tables. You need to consider how the column will be
used. If for searching, then evaluate the efficiency of column indexing, composite indexes, the
efficiency of index scanning by available methods (Bitmap Index Scan, Index Scan, Index Only Scan).
The third most compact type is int2 (synonym smallint), the value of this type takes 2 bytes. It is worth

using the name smallint, as it is defined in the SQL standard. The range is -32768 ..32767.

95Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the list of data types and their characteristics is in the pg_type table
• if the column will be used for searching, it is worth evaluating the

efficiency of column indexing, composite indexes, the efficiency of
index scanning using available methods (Bitmap Index Scan, Index
Scan, Index Only Scan)

• Data types that take up the least space:
› boolean takes 1 byte
› "char" takes 1 byte, stores ASCII characters
› char takes 2 bytes,

– stores characters in the database encoding
› smallint , takes 2 bytes

– stores integers from -32768 to 32767

Smallest data types: boolean, "char", char,
smallint

Variable Length Data Types

Next in compactness are variable-length data types.
For variable-length strings, you should use the text type. The type is not in the SQL standard, but most

built-in string functions use text, not varchar. varchar is described in the SQL standard. For varchar, you
can specify the dimension varchar(1..10485760). The dimension for text is not specified. The dimension
works as a "domain" (restriction). Checking the constraint takes processor resources. Of course, if the
constraint is important for the correct operation of the application (business rules), then you should not
refuse them.
Place occupied:
1) The first byte allows us to distinguish what is stored in the field: a byte with a length (odd HEX

values 03, 05, 07...fd, ff) and data up to 126 bytes; 4 bytes with a length (the first byte is an even HEX
value 0c, 10, 14, 18, 20...); the field is TOASTed (0x01); the presence of compression is determined by
the field size value.
For example: if the field is empty (''), the first byte stores the value \x03. If the field stores one byte,

then 0x05, if two bytes - 0x07.
2) if the encoding is UTF8, then ASCII characters take 1 byte. Therefore, the value '1' will take 1 byte:

31 (in HEX form). The value '11' will take 2 bytes: 3131. The Cyrillic character 'э' will take 2 bytes: d18d.
3) Optional zeros. Fields up to 127 bytes long are not aligned . Fields from 127 bytes are aligned by

pg_type.typalign (i = 4 bytes).
Example:
drop table if exists t5; create table t5(c1 text default '1',c2 text default
'э', c3 text default ''); insert into t5 values(default, default, default);
select lp_off, lp_len, t_hoff, t_data from
heap_page_items(get_raw_page('t5','main',0)) order by lp_off;
lp_off | lp_len | t_hoff | t_data
--------+--------+--------+----------------

8144 | 30 | 24 | \x053107d18d03
Fields can be compressed and remain in the block. In example 05 07 03 - field length.
Fields can be TOASTed, leaving 18 bytes in the block (not aligned).
Binary data should be stored in the bytea data type. This is a variable-length data type and its behavior

is the same as the text type. Binary data can be unloaded using the COPY command with the WITH
BINARY option , otherwise it is unloaded as text by default.

96Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• for variable length strings it is worth using the text type
• the dimension for text is not specified
• Place occupied:

› one byte if the field length is less than 127 bytes and the string is empty ''
› if the encoding is UTF8, then ASCII characters take 1 byte. Therefore, the value '1'

will take 2 bytes: \x 0531 . The value '11' will take 3 bytes: \x 073131 . A field
consisting of the letter ' э ' will take 3 bytes: \x 07d18d

› if the field length is more than 126 characters, then the field header will become 4
bytes and the fields will be aligned to 4 bytes

• fields can be compressed and remain in the block
• fields can be TOASTed, leaving 18 bytes in the block (not aligned)
• Binary data should be stored in the bytea data type. This is a variable-length

data type and its behavior is the same as the text type.

Variable Length Data Types

Integer data types

Integers can be stored in the int(integer) and bigint types (in addition to smallint). These names are
defined in the SQL standard. They correspond to the names int2, int4, and int8. These types are
typically used for PRIMARY KEY columns. bigint is 8-byte aligned. Using int for a primary or unique key
will limit the number of rows in a table to 4 billion (2^32). The number of fields that can be TOASTed is
also limited to 4 billion (2^32), but this limit may be reached earlier .
Sequences are used to generate values for the smallint, int, and bigint types, and there are synonyms

smallserial(serial2), serial (serial4), bigserial (serial8). These are auto-incrementing columns. Numeric
types are signed, and if you use only positive numbers, serial uses the range from 1 to 2 billion
(2147483647), not 4 billion.
The variable-length numeric type (synonymous with decimal), described in the SQL standard, can be

used to store numbers. The overhead is 4 bytes for storing the field length.
The range for this type is significant: 131072 digits before the point and 16383 digits after the point.

But if you specify numeric(precision, scale) when defining the type, then the maximum precision and
scale values are 1000. numeric can be declared with a negative scale: values can be rounded to tens,
hundreds, and thousands. In addition to numbers and null, numeric supports the values Infinity, -
Infinity, NaN.
The advantage of numeric is that columns typically store small numbers, and numeric fields use less

space than fixed-length decimal types.
To handle decimal numbers, you can use numeric instead of float4(real) or float8(double precision).
Some recommendations for using data types:
https://wiki.postgresql.org/wiki/Don't_Do_This

97Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• integers can be stored in types int(integer, int4), bigint
(int8), smallint (int2)

• typically used for PRIMARY KEY columns
• bigint is aligned to 8 bytes
• int for primary or unique key will limit the number of rows in

the table to 4 billion (2^32)
• to generate values for types smallint, int and bigint,

sequences are used and there are synonyms
smallserial(serial2), serial (serial4), bigserial
(serial8)

• numeric (synonym decimal) can be used to store numbers ,
overhead 4 bytes for storing the field length

Integer data types

Storing dates, times, and their intervals

When storing dates, times, intervals, it is worth considering the size that the values of the selected
type will occupy in blocks, as well as whether there are functions, type casts, operators for the selected
type.
The most compact type for storing dates is date. The date data type takes up only 4 bytes and stores

data with an accuracy of up to a day. The date data type does not store time (hours, minutes). This is
not a disadvantage, since you do not need to think about rounding up to a day when comparing dates.
The timestamp and timestamptz data types store time and date with microsecond precision and

occupy 8 bytes. Both types do not store time zones, and the values are physically stored in the same
format .
timestamptz stores data in UTC. The timestamp data type does not display the time zone, does

not use the time zone, and stores the value as is (without conversion). timestamptz displays and
performs calculations in the time zone specified by the timezone parameter :
show timezone;
Europe/Moscow
create table t(t TIMESTAMP, ttz TIMESTAMPTZ);
insert into t values (CURRENT_TIMESTAMP, CURRENT_TIMESTAMP);
SELECT t, ttz FROM t;
2024-11-25 23:19:47.833968 | 2024-11-25 23:19:47.833968+03
set timezone='UTC';
select t, ttz from t;
2024-11-25 23:19:47.833968 | 2024-11-25 20:19:47.833968+00
update t set ttz=t;
select lp_off, lp_len, t_hoff, t_data from heap_page_items(get_raw_page('t','main',0)) order by lp_off;
lp_off | lp_len | t_hoff | t_data
--------+--------+--------+-------------------------------
8096 | 40 | 24 | \x 70580939c1ca020070580939c1ca0200 -- current version of the line
8136 | 40 | 24 | \x 7044c4bcc3ca0200 70580939c1ca0200 -- old version of the string
select t, ttz from t;
2024-11-25 20:19:47.833968 | 2024-11-25 20:19:47.833968+00

time data type stores time with microsecond precision and also takes up 8 bytes, which is quite a lot.
timetz data type takes up 12 bytes . The interval data type takes up the most space, at 16

bytes . Because of their larger size, these two data types are not practical.

98Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• to store dates, times, intervals the following types are used:
› date (4 bytes, accurate to the day)
› timestamp, timestamptz, time precision up to microsecond,

size is the same 8 bytes, content is the same
› timetz - length 12 bytes, interval - length 16 bytes

• data types timestamp, timestamptz do not store time zone
• timestamptz converts the stored time to the client's time zone
• timestamptz physically stores values in UTC

Storing dates, times, and their intervals

create table t(t TIMESTAMP, ttz TIMESTAMPTZ);
insert into t values (CURRENT_TIMESTAMP, CURRENT_TIMESTAMP);
set timezone='UTC';
select t, ttz from t;
2024-11-25 23:19:47.833968 | 2024-11-25 20:19:47.833968+00
update t set ttz=t;
select lp_off, lp_len, t_hoff, t_data from heap_page_items(get_raw_page('t','main',0)) order by lp_off;
lp_off | lp_len | t_hoff | t_data
--------+--------+--------+------------------------------------

8096 | 40 | 24 | \x70580939c1ca020070580939c1ca0200
8136 | 40 | 24 | \x7044c4bcc3ca020070580939c1ca0200

select t, ttz from t;
2024-11-25 20:19:47.833968 | 2024-11-25 20:19:47.833968+00

Data types for real numbers

Data types for working with real numbers:
1) float4 synonym real synonym float(1..24)
2) float8 synonym float synonym double precision synonym float(25..53)
3) numeric synonym decimal .
float4 provides 6 digits of precision (significant numbers in decimal notation), float8 provides 15

digits of precision . The last digit is rounded:
select 12345 6 78901234567890123456789.1234567890123456789 ::float4::numeric;
12345 7 00000000000000000000000
select 12345678901234 5 67890123456789.1234567890123456789 ::float8::numeric;
12345678901234 6 00000000000000
The sixth and fifteenth digits are highlighted in red, which have been rounded. You can also see that

digits greater than the sixth and fifteenth digits have been replaced with zeros, meaning that precision
is not preserved. The downside of these data types is that adding a small number to a large number is
equivalent to adding a zero:
select (12345678901234567890123456789.1234567890123456789::float8 +
123456789::float8)::numeric;
12345678901234 6 00000000000000
Adding 123456789::float8 is equivalent to adding zero.
Using float can lead to poorly diagnosed errors. For example, a column stores the flight range of an

airplane, when testing for short distances, the airplane lands with an accuracy of a millimeter, and when
flying for long distances with an accuracy of a kilometer.
When rounding float8, the sixteenth digit is taken into account:
select 12345678901234 4 9 99::float8::numeric, 12345678901234 4 4 99::float8::numeric;
12345678901234 5 000 | 12345678901234 4 000
select 0.12345678901234 4 9 99::float8::numeric, 0.12345678901234 4 4
99::float8::numeric;
0.12345678901234 5 | 0.12345678901234 4
When rounding float4, the seventh digit is taken into account:
select 1234 49 9 ::float4::numeric, 12344 4 9 ::float4::numeric;
1234 5 00 | 12344 5 0
select 0.1234 49 9 ::float4::numeric, 0.12344 4 9 ::float4::numeric;
0.1234 5 | 0.12344 5

99Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• fixed length, floating point, rounded to 6 or 15 digits (significant numbers in decimal
format):
› float4 , real , float(1..24) - stores at least 6 digits in 4 bytes
› float8 , float , double precision , float(25..53) stores at least 15

digits in 8 bytes

• variable length, without loss of accuracy in calculations:
› numeric, decimal
› precision can be set by parameters: numeric(presision,scale)

• an example of exponential notation of identical numbers with different mantissa and
order :

Data types for real numbers

select 12345 6 78901234567890123456789.1234567890123456789::float4::numeric;
1234570 0000000000000000000000

select 12345678901234 5 67890123456789.1234567890123456789::float8::numeric;
123456789012346 00000000000000

select 1234567890123456789.123456789::numeric + 0.0000000000000000000 0123456789 ::numeric;
1234567890123456789.1234567890000000000 0123456789

select 12345.6 ::float4, ' 12.3456 e + 03 '::float4, ' 123.456 e + 02 '::float4, ' 1234.56 e +
01 '::float4;
1.235e+04 | 1.235e+04 | 1.235e+04 | 1.235e+04

Snapshot

There may be multiple versions of the same row in data blocks. Each transaction, despite the
existence of multiple versions, sees only one of them. A snapshot provides isolation between
transactions by providing them with an image of the data at a certain point in time, even if multiple
versions of the same row may physically exist in the database.
The picture represents the numbers:
The lower bound of the snapshot , xmin, is the number of the oldest active transaction. All transactions

with lower numbers have already been completed (committed), and their changes are reflected in the
snapshot, while transactions with higher numbers may have been undone, and their changes are
ignored.
The upper bound of a snapshot , xmax, is a value one greater than the number of the last completed

transaction. This defines the point in time at which the snapshot was created. Transactions with
numbers greater than or equal to xmax are not yet completed or do not exist, and therefore changes
associated with such transactions are not reflected in the snapshot.
The list of active transactions , xip_list (list of transactions in progress), includes the transaction

numbers of all active transactions, except virtual ones, which do not affect data visibility.
A function that returns the contents of a snapshot and a function that exports it for another session:
postgres=# BEGIN TRANSACTION;
postgres=*# select pg_current_snapshot();
pg_current_snapshot

362:362:
postgres=*# select pg_export_snapshot();
pg_export_snapshot

00000024-0000000000000000A-1

100Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• represents a consistent state of the database at a point in time
• The data snapshot includes:

› xmin - the number of the oldest active transaction
› xmax - a value that is one greater than the number of the last completed

transaction
› xip_list - list of active transactions

• A function that returns the contents of a snapshot and a function that
exports it for another session:

Snapshot

postgres=# BEGIN TRANSACTION;
postgres=*# select pg_current_snapshot();
pg_current_snapshot

362:362:
postgres=*# select pg_export_snapshot();
pg_export_snapshot

00000024-0000000000000000A-1

Transaction

Transaction - a set of SQL commands. Starts explicitly or implicitly
It is terminated by one of two actions: committing (COMMIT, END commands) or rolling back

(ROLLBACK command)
The result of an aborted transaction is the same as a rolled back ROLLBACK command. A transaction

is started explicitly by the BEGIN TRANSACTION command or implicitly - in the plpgsql block :
postgres=# do $$
begin
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
perform 1;
end $$;
ERROR: SET TRANSACTION ISOLATION LEVEL must be called before any query
CONTEXT: SQL statement "SET TRANSACTION ISOLATION LEVEL REPEATABLE READ"
PL/pgSQL function inline_code_block line 3 at SQL statement

The transaction was started in an anonymous plpgsql block.
To change the isolation level in an anonymous plpgsql block, you need to roll back the transaction or

commit it:
postgres=# do $$
begin
ROLLBACK;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
perform 1;
end $$;
DO

In PostgreSQL, you can execute not only select, insert, update, delete, but also almost all commands in
transactions. Including create, alter, drop, truncate. You cannot execute commands that generate
transactions on their own: vacuum, create/drop database. Example:
do $$
begin
begin
drop table if exists a;
create table a (id int);
end;
rollback and chain;
drop table if exists a;
commit and no chain;
drop table if exists a;
rollback and chain;
end $$;

101Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Transaction - a set of commands
• Begins explicitly or implicitly
• It is terminated by one of two actions: committing (COMMIT, END

commands) or rolling back (ROLLBACK command)
• The result of an aborted transaction is the same as a rolled back

command.
• Example of implicit transaction start:

Transaction

postgres=# do $$
begin
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
perform 1;
end $$;
ERROR: SET TRANSACTION ISOLATION LEVEL must be called before any query
CONTEXT: SQL statement "SET TRANSACTION ISOLATION LEVEL REPEATABLE READ"
PL/pgSQL function inline_code_block line 3 at SQL statement

postgres=# do $$
begin
ROLLBACK;
SET TRANSACTION ISOLATION
LEVEL REPEATABLE READ;
perform 1;
ROLLBACK AND CHAIN;
perform 1;
COMMIT AND NO CHAIN;
end $$;
DO

Transaction Properties

The value of executing commands in transactions lies in the "ACID" properties of transactions:
Atomicity - when committing, all commands are executed without exception, when rolling back - not a

single command is executed. Moreover, changes from the moment of committing are instantly visible to
other sessions.
Consistency - absence of violation of declarative integrity constraints.
Isolation of transactions from each other. In SQL, it is implemented by one of the isolation levels and

locks (at the row and object level).
Fault tolerance (Durability) - if the client has received confirmation of successful transaction commit

(COMMIT COMPLETE), then it can be sure that the transaction result will not be lost. This is guaranteed
by the PostgreSQL software and the database cluster administrator. The administrator is required not to
restore the cluster to a point in time in the past, not to change the fault tolerance parameters (fsync,
full_page_writes, synchronous_commit). To protect against cluster loss, the administrator
should ensure proper cluster backup. For example, have a synchronous physical replica or the
pg_receivewal process confirming transaction commits.
If the client sends a COMMIT command but does not receive a confirmation that the transaction has

been committed, the transaction may or may not be committed. Such cases must be resolved by the
application; there is no standard way to determine the status of a transaction. Oracle Database uses the
Transaction Guard and Application Continuity options for such cases.

102Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Atomicity - when committing, all commands are executed without
exceptions, when rolling back - no commands are executed
› Once committed, changes are instantly visible to other sessions

• Integrity - absence of violation of declarative integrity constraints
• Isolation of transactions from each other

› It is implemented by one of the isolation levels
• Fault tolerance (Durability) - if the client has received confirmation of

the successful transaction commit (COMMIT COMPLETE), then it can
be sure that the transaction result will not be lost

Transaction Properties

Transaction Isolation Levels

Isolation levels determine the degree to which changes made by one transaction are visible to other
transactions.
The SQL standard defines four isolation levels:
READ UNCOMMITTED - Reading uncommitted data: This is the lowest isolation level. It allows

transactions to see changes made by other transactions, even if those changes have not yet been
committed. Not supported in PostgreSQL, READ COMMITTED is used instead.
READ COMMITTED - read committed data. SELECT statements see data that was committed at the

time the SELECT began executing.
REPEATABLE READ repeatability of reading data. SELECT commands in one transaction do not see

changes committed by other transactions after the start of their transaction. They see changes made
only in their transaction. The first command starts the transaction, and it forms a snapshot that is used
until the end of the transaction. The snapshot and SELECT commands do not lock rows.
SERIALIZABLE (ordered, sequential execution): When transactions of this level are executed

simultaneously (with overlapping time), they must produce the same result as if they were committed
one by one in all permutations of the commit time. This is the highest level of isolation of transactions
from each other. To ensure that the result does not change, all transactions that change the data used
in the transactions must operate at this level.
At the REPEATABLE READ and REPEATABLE READ levels, if the data has changed, a serialization

failure is possible: "can't serialize access", the transaction goes into a failure state and cannot commit,
it must be rolled back.

103Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• READ UNCOMMITTED - reading uncommitted data. Not used in
PostgreSQL

• READ COMMITTED - read committed data. Used by default
• REPEATABLE READ - repeatability by reading. Should be used only for

reading, not changing data (READ ONLY)
• SERIALIZABLE - ordered execution

› at REPEATABLE READ and REPEATABLE READ levels, if the data has
changed, a serialization failure is possible: "can't serialize access", the
transaction goes into a failure state and cannot commit

Transaction Isolation Levels

Transaction Isolation Phenomena

ISO SQL-92 and subsequent standards define three concurrency phenomena (isolation of concurrent
transactions) that must be avoided at isolation levels.
Serialization violation (not a phenomenon, but a consequence of the description of the Serializable

level) is when the result of a successful commit of overlapping transactions turns out to be different for
all possible variants of committing these transactions in turn. Also, integrity constraints cannot be
violated at all levels. Moreover, integrity constraints do not depend on isolation levels.
A synonym for non-repeatable read (P2) is fuzzy read.
Dirty reads are not allowed at any isolation level in PostgreSQL, so Read uncommitted is the same as

Read committed.
Non-repeatable read - When re-reading the same data that was previously read by the same

transaction, it is discovered that the data has been modified and committed by another transaction.
There are no other phenomena described in the ISO SQL standards.
At all levels, changes should not be lost (no updates will be lost). In ANSI SQL, similar anomalies were

mentioned: lost update (P4) and cursor lost update (P4C), which were allowed at the Read committed
level. Lost updates are not allowed in PostgreSQL, since the UPDATE, DELETE commands, when
encountering a locked row after releasing the lock, reread the row fields and see the changes of other
transactions made after the start of the UPDATE, DELETE command.

https://docs.tantorlabs.ru/tdb/en/17_5/se/transaction-iso.html

104Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• ISO SQL-92 and subsequent standards define three concurrency
phenomena that must be avoided at isolation levels

• integrity constraints cannot be violated at all levels
• dirty reads are not allowed in PostgreSQL at any isolation level, so Read

uncommitted is the same as Read committed

Transaction Isolation Phenomena

Insulation
level

Dirty Reading
(P1)

Non-repeatable
read (P2)

Phantom
Reading (P3)

Serialization
Violation

Read
uncommitted

Allowed,
but not in PG

Maybe Maybe Maybe

Read committed No Maybe Maybe Maybe

Repeatable
reading

No No Allowed,
but not in PG

Maybe

Serializable No No No No

Example of serialization error

There are descriptions of concurrent access anomalies, which are given names like read skew (A5A),
write skew (A5B), but such anomalies are subjective - for some the result of committing transactions is
unexpected (anomalous), for others it is expected.
For example, in Oracle Database, the Serializable level is understood as if there are no parallel

sessions, the transaction sees the data at the time of its start, changes made by other transactions are
not visible to it (as if they do not exist). Based on this definition, in Oracle Database, SERIALIZABLE level
transactions can simultaneously perform INSERT into a SELECT table without receiving errors. In
PostgreSQL, a serialization error will be issued. You can subjectively consider this to be a "lost insert
anomaly". But Oracle Database is practical and the ability to insert rows with a selection from other
tables is considered logical and does not lead to a violation of business logic. In PostgreSQL, the
second transaction returns a serialization error, although in the example the result of committing the
transactions does not depend on the order in which they are committed: in any order, two rows are
created with the values 0 and 1. When checking for errors at the SERIALIZABLE level, PostgreSQL uses
"predicate locks" (SIReadLock , Serializable Isolation Read Lock), which do not thoroughly check for
serialization violations, but return an error if one is potentially possible. If you see a lock with this name,
then there are transactions of this level:
select locktype, relation::regclass, mode from pg_locks;
locktype | relation | mode
---------------+----------+------------------
relation | b | SIReadLock
Oracle Database does not have the Read uncommitted level, as does PostgreSQL, and instead of the

Repeatable Read level, READ ONLY is used with read repeatability, which reduces the number of errors
when developing the logic for using transactions.
CockroachDB and YDB use the Serializable isolation level by default, but the probability that a

transaction will not be able to commit is very high, and such DBMSs provide automatic attempts to
commit on the server side and the client side. With a large number of parallel transactions, this can lead
to a decrease in performance. Because of this, such DBMSs cannot be considered universal, they have
their own niche and sequence of operations in transactions, in which there will be no problems with
transaction committing, and therefore performance.

105Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Example of serialization error:

• In Oracle Database at level SERIALIZABLE errors net

Example of serialization errors

postgres=# drop table if exists a;
DROP TABLE
postgres=# create table a (x int);
CREATE TABLE
1 postgres=# begin transaction isolation
level serializable;
BEGIN
3 postgres=*# insert into b select count(*)
from a;
INSERT 0 1
5 postgres=*# commit;
COMMIT

postgres=# drop table if exists b;
DROP TABLE
postgres=# create table b (x int);
CREATE TABLE

2 postgres=# begin transaction isolation level
serializable;
BEGIN
4 postgres=*# insert into a select count(*) from b;
INSERT 0 1

6 postgres=*# commit;
ERROR: could not serialize access due to read/write
dependencies among transactions
DETAIL: Reason code: Canceled on identification as
a pivot, during commit attempt.
HINT: The transaction might succeed if retried.

Transaction Statuses (CLOG)

The transaction status log (CLOG) stores the states of past transactions up to the value of the
autovacuum_freeze_max_age configuration parameter from the current transaction. The
log is a bitmap, with two bits allocated for each transaction. The array is stored in files in the
PGDATA/pg_xact directory. The files are copied entirely to the WAL at the beginning of each
checkpoint. The files are accessed using a shared memory buffer called transaction (formerly called
CLOG Buffers):
postgres=# SELECT name, allocated_size, pg_size_pretty(allocated_size) from
pg_shmem_allocations where name like '%tran%';
name | allocated_size | pg_size_pretty
----------------+----------------+----------------
subtransaction | 267520 | 261 kB
transaction | 529664 | 517 kB
The buffer size is set by the transaction_buffers configuration parameter.
Memory usage statistics:
postgres=# select name, blks_zeroed, blks_hit, blks_read, blks_written from
pg_stat_slru where name like '%tran%';
name | blks_zeroed | blks_hit | blks_read | blks_written
----------------+-------------+----------+-----------+--------------
subtransaction | 9888 | 8 | 0 | 9889
transaction | 308 | 24935727 | 24 | 457

Bit values: 00 - transaction in progress, 01 - committed, 10 - aborted, 11 - subtransaction committed,
but is a subtransaction of another transaction that has not yet completed. A subtransaction is created if
a savepoint is explicitly (SAVEPOINT) or implicitly (EXCEPTION block in plpgsql) created in a
transaction. Subtransactions have their own numbers and select them from the general transaction
counter, which exhausts these numbers faster.
The CLOG is accessed by processes including vacuum, which freezes row versions, to find out the

status of transactions. The maximum size of CLOG files depends on the autovacuum_freeze_max_age
configuration parameter .
https://eax.me/postgresql-procarray-clog/

106Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The log is a bitmap with two bits allocated for each transaction.
• Bit values:

› 00 - transaction in progress
› 01 - fixed
› 10- aborted
› 11 - subtransaction committed but parent transaction not completed

• The CLOG is accessed by processes, including vacuum, which
performs row version freezing, to find out the status of transactions.

• The maximum size of CLOG files depends on the
autovacuum_freeze_max_age configuration parameter.

Transaction Statuses (CLOG)

ca

00

0

1

1

0

Committing a transaction

When a transaction commits, a record is written to the transaction log (WAL) that the transaction has
committed. This is done to ensure fault tolerance. A bit is written to the CLOG log buffer. A bit is set in
the CLOG for the transaction that is committing, indicating a successful commit. This allows us to
determine which transactions have completed successfully.
Resources that were used during the transaction are released: locks, cursors (except WITH HOLD

cursors), contexts (parts) of the local memory of the process.
In case of transaction cancellation (ROLLBACK), instead of committing, information about transaction

cancellation is written to CLOG and journal.
CLOG files are stored in WAL at the beginning of a checkpoint, and changes to them are not logged

until the next checkpoint. During crash recovery, the CLOG contents are reconstructed from WAL
records.
Rolling back and committing a transaction occurs equally quickly.

107Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When a transaction is committed, a record is written to the
transaction log (WAL) indicating that the transaction has been
committed.

• Writing a bit to the CLOG log buffer
• Resources that were used during the transaction are

released: locks, cursors (except WITH HOLD cursors),
contexts (parts) of the local process memory

• CLOG files are stored in WAL at the beginning of a
checkpoint and changes to them are not logged until the next
checkpoint. During crash recovery, the CLOG contents are
reconstructed from WAL records.

Committing a transaction

Subtransactions

The PGPROC structure stores up to 64 (PGPROC_MAX_CACHED_SUBXIDS) subtransactions.
Subtransactions are savepoints that can be rolled back to rather than causing the transaction to fail.
Subtransactions are created:
1) SAVEPOINT command;
2) the EXCEPTION section in a block in the pl/pgsql language (the savepoint is implicitly set at the

beginning of the block with the EXCEPTION section).
Subtransactions can be created in other subtransactions and a tree of subtransactions is formed.

Subtransactions that only read data are assigned a virtual number. If a data modification command is
encountered, then subtransactions up to the main transaction are assigned real numbers. The xid of a
child subtransaction is always lower than that of the parent.
Each server process's PGPROC structure caches up to 64 subtransaction numbers. If the number of

subtransactions is greater, the overhead of supporting work with subtransactions increases
significantly.
There is a parameter in psql:
postgres=# \set ON_ERROR_ROLLBACK interactive
disabled by default. When using the interactive value, when working interactively in psql, psql will set a

savepoint before each command in an open transaction. Due to this, in case of any error (for example,
a typo in the command), the last command will be rolled back. This makes working in psql more
convenient. Setting the value to 'on' is not worth it, since when executing scripts (non-interactively), if
transactions are opened in them or the autocommit mode is disabled, savepoints will be set. This will
significantly slow down the execution of commands and will unnecessarily consume transaction
numbers.

108Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• subtransactions are save points
› are used to roll back, not to put the transaction into a failed state

• are being created
› SAVEPOINT team
› EXCEPTION section in pl/pgsql block
› in psql when opening a transaction when setting the parameter

\set ON_ERROR_ROLLBACK interactive
• The PGPROC structure stores up to 64 subtransaction numbers
• subtransactions that only read data are assigned a virtual number
• if a data modification command is encountered, then subtransactions

up to the main transaction are assigned real numbers

Subtransactions

Types of locks

The instance uses locks for interprocess communication:
1) spinlock (cyclic check). Used for very short-term actions - no longer than a few dozen processor

instructions. Not used if an input-output operation is being performed, since the duration of such an
operation is unpredictable. It is a variable in memory that is accessed by atomic processor instructions.
A process wishing to obtain a spinlock checks the status of the variable until it is free. If the lock cannot
be obtained within a minute, an error is generated. There are no monitoring tools.
2) Lightweight (LWLocks). Used to access structures in shared memory. Have exclusive (read and

modify) and shared (read) modes. There is no deadlock detection, they are automatically released in
case of failure. The overhead of acquiring and releasing a lock is small - several dozen processor
instructions, if there is no conflict for the lock. Waiting for a lock does not load the processor.
Processes acquire a lock in the order of the queue. There are no timeouts for acquiring lightweight
locks. Spinlocks are used when accessing LWLock structures. The number of LWLocks is limited by the
constant: MAX_SIMUL_LWLOCKS=200 . There are more than 73 named LWLocks, sets (tranches) of
which protect access to structures in shared memory. Their names are present in wait events. Example
names: XactBuffer, CommitTsBuffer, SubtransBuffer, WALInsert, BufferContent, XidGenLock,
OidGenLock.
3) Regular (heavyweight). Automatically released at the end of the transaction. There is a procedure

for detecting and resolving deadlocks. There are several levels of locks. Serves locks at the level of 12
object types (LockTagTypeNames).
4) Predicate locks (SIReadLock) - used by transactions with the SERIALIZABLE isolation level.
Parallel processes are combined into a group with their server process (group leader). In version 16,

processes in a group do not conflict, which is implemented by the algorithm of their work. Parallelism
develops and the logic of blocking can develop.
One of the lock types (pg_locks.locktype): advisory locks (application-level locks, user-level),

can be obtained at the session and transaction level, managed by the application code.
While waiting to acquire a lock, the process does not perform useful work, so the shorter the time it

waits to acquire locks, the better.

109Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• spinlock (cyclic check)
› Used for very short-term actions - no longer than a few dozen processor

instructions
› There are no monitoring tools

• Lightweight (LWLocks)
› Used to access structures in shared memory.
› They have exclusive (read and modify) and shared (read) modes.
› no more than 200 at a time

• regular (heavy)
› Automatically released upon completion of the transaction
› There are several levels of blocking
› Serves 12 types of locks , including advisory locks.

• predicate locks (SIReadLock) are used by transactions with the
SERIALIZABLE isolation level

Types of locks

Object locks

When executing commands, a lock is requested on the objects affected by the command. For
example, SELECT automatically requests ACCESS SHARE locks on tables, indexes, and views used in
the query to form an execution plan. Until the locks are obtained, the command will not begin to
execute.
Object-level locks use a "fair" lock queue, meaning that locks will be serviced in the order they are

requested, regardless of the levels of the locks requested, and there is no priority.
The lock_timeout configuration parameter can be used to set the maximum waiting time for obtaining a

lock on any object or table row. If the value is specified without units, milliseconds are used. The
timeout applies to each attempt to obtain a lock. When working with table rows, there may be many
attempts even when executing a single command.

110Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When executing commands, a lock is requested on the objects
affected by the command.
› SELECT automatically requests ACCESS SHARE locks on tables, indexes,

views
• Until the locks are acquired, the command will not start executing.
• Object-level locks use a "fair" lock queue. This means that locks will be

serviced in the order they are requested, regardless of the levels of the
locks requested, and there is no priority.

• The lock_timeout configuration parameter can be used to set the
maximum time to wait for acquiring a lock on objects or rows.

Object locks

Compatibility of locks

Weak locks can be obtained via the fast path:
AccessShare - sets SELECT, COPY TO , ALTER TABLE ADD FOREIGN KEY (PARENT) and any query

that reads the table. Conflicts only with AccessExclusive.
RowShare - sets SELECT FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE, FOR KEY SHARE.

Conflicts with Exclusive and AccessExclusive.
RowExclusive - sets INSERT, UPDATE, DELETE, MERGE, COPY FROM . Conflicts with Share,

ShareRowExclusive, Exclusive, AccessExclusive.
Not weak and not strong blocking:
ShareUpdateExclusive - installs autovacuum, autoanalysis and commands VACUUM (without FULL),

ANALYZE , CREATE INDEX CONCURRENTLY , DROP INDEX CONCURRENTLY, CREATE STATISTICS,
COMMENT ON, REINDEX CONCURRENTLY , ALTER INDEX (RENAME), 11 types of ALTER TABLE
Autovacuum and autoanalysis do not interfere with the use of the fast path.
Strong locks, if present, do not allow weak locks to be installed via the fast path. Their list:
Share - CREATE INDEX (without CONCURRENTLY)
ShareRowExclusive - sets CREATE TRIGGER and some types of ALTER TABLE
Exclusive - installs REFRESH MATERIALIZED VIEW CONCURRENTLY
AccessExclusive - sets DROP TABLE, TRUNCATE, REINDEX, CLUSTER, VACUUM FULL and REFRESH

MATERIALIZED VIEW (without CONCURRENTLY), ALTER INDEX, 21 types of ALTER TABLE.
Autovacuum does not interfere with the execution of commands by server processes . If autovacuum or

autoanalysis processes a table and the server process requests a lock that is incompatible with the lock
that autovacuum has set (ShareUpdateExclusive), the autovacuum worker process is terminated by the
server process via deadlock_timeout and the following message is written to the diagnostic log:
ERROR: canceling autovacuum task
DETAIL: automatic vacuum of table 'name'
Autovacuum will try to process the table and its indexes again in the next cycle.

111Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• weak locks can be obtained via the fast path
• strong table locks prevent weak locks from being set on the fast path
• autovacuum and autoanalysis do not interfere with the use of the fast path
• autovacuum and autoanalysis do not block commands, in case of a lock

conflict, the autovacuum workflow interrupts table processing

Compatibility of locks

ACCESS
SHARE

ROW
SHARE

ROW
EXCL.

SHARE
UPDATE
EXCL.

SHARE SHARE
ROW
EXCL.

EXCL. ACCESS
EXCL.

ACCESS SHARE X
ROW SHARE X X
ROW EXCLUSIVE X X X X
SHARE UPDATE EXCL. X X X X X
SHARE X X X X X
SHARE ROW EXCLUSIVE X X X X X X
EXCLUSIVE X X X X X X X
ACCESS EXCLUSIVE X X X X X X X X

Object locks

For example, there is a table. It is accessed in transaction 500 to select SELECT data. An Access Share
lock is imposed. In parallel, after some time, the Alter table (ACCESS EXCLUSIVE) command comes
from transaction 503. The transaction is queued. If another transaction comes that is not compatible in
terms of lock level, for example, with number 512 Update (ROW EXCLUSIVE), it will also be queued. To
perform their actions, transactions will wait until the previous one is completed.
The level of locks can be compatible. For example, if an update of rows comes with an update of rows

of the same table but other, these transactions can do their work in parallel.

112Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Object-level locks form queues

Object locks

Update…
(ROW

EXCLUSIVE)

Alter table…
(ACCESS

EXCLUSIVE)

Select…
(Access
Share)

512 503 500

Table

Row locks

Row level locks are set automatically.
A transaction can hold conflicting locks on the same row, but beyond that, two transactions can never

hold conflicting locks on the same row. Row-level locks do not affect data queries; they only block
writers and blockers for the same row.
Row-level locks are released when the transaction commits or when the savepoint is rolled back, just

like table-level locks. Locking modes:
FOR UPDATE: Requests a row lock for update operations, preventing them from being modified or

locked by other transactions until the current transaction completes. Used when performing UPDATE,
DELETE, SELECT FOR UPDATE, and similar operations.
FOR NO KEY UPDATE: Similar to FOR UPDATE, but weaker locking, does not affect SELECT FOR KEY

SHARE commands.
FOR SHARE: Requests a shared row lock for reading, preventing modification or locking by other

transactions for UPDATE, DELETE, SELECT FOR UPDATE, and similar operations.
FOR KEY SHARE: Similar to FOR SHARE, but blocks SELECT FOR UPDATE and does not affect SELECT

FOR NO KEY UPDATE.
PostgreSQL does not store information about modified rows in memory, and there is no limit on the

number of rows that can be locked at one time.
https://docs.tantorlabs.ru/tdb/en/17_5/se/explicit-locking.html

113Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Compatibility table

Row locks

requested mode
line locked in mode

FOR KEY
SHARE

FOR SHARE FOR NO KEY
UPDATE

FOR UPDATE

FOR KEY SHARE X

FOR SHARE X X

FOR NO KEY UPDATE X X X

FOR UPDATE X X X X

Multitransactions

The SELECT .. FOR SHARE, FOR NO KEY UPDATE, FOR KEY SHARE commands allow several
transactions to work with a row simultaneously. The FOR NO KEY UPDATE lock is set by the UPDATE
command, which does not make changes to the key columns. The FOR KEY SHARE lock is set by the
DELETE and UPDATE commands, which update the values of the key columns. More detailed wording
is in the documentation. The important thing is that regular DELETE and UPDATE commands can set
shared locks on rows. When a second transaction appears while the first one is running, the second
server process will create a multitransaction. Most applications that mainly create rows do not
experience problems, since the inserted row is not visible to other sessions and they cannot lock it. A
conflict can occur when inserting a record into a unique index, and then the second transaction will wait
(there will be no multitransactions). And this is unlikely, since properly designed applications use auto-
incrementing columns. Updating rows is a labor-intensive operation in all relational DBMSs, and
especially in PostgreSQL because PostgreSQL stores old versions of rows in data blocks. If the
application architect (designer) actively uses UPDATE, then in addition to reducing the share of HOT
cleanup, it is possible that some transactions will "collide" on some rows and the second server
process will create a multitransaction. Subsequent transactions can join the multitransaction, that is,
there can be two or more transactions. Moreover, a new multitransaction is created, which includes the
previous transactions. This is not optimal, but the probability that not two, but three or more
transactions will want to change a row is usually not high.
If deadlocks occur in an application, this directly indicates errors in the application architecture. If,

instead of changing the logic of working with data, shared locks are used, then deadlocks may stop, but
performance will not improve.

114Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• A FOR NO KEY UPDATE lock is set by an UPDATE command that
makes no changes to the key columns.

• FOR KEY SHARE lock is set by DELETE and UPDATE commands that
update key column values

• also shared locks are set by the commands SELECT .. FOR SHARE, FOR
NO KEY UPDATE, FOR KEY SHARE

• Shared locks allow multiple transactions to work on a row at the same
time

• Simultaneous work is implemented by "multi-transactions", which have
their own xid counter , their own files and caches

• the correspondence between xid transactions and multitransactions is
stored in the directory PGDATA/pg_multixact

• advisory locks are not a replacement for row locks, as their number is
limited

Multitransactions

Queue when row is locked

A row lock is indicated by the filling of the xmax field in the row version header.
If a transaction arrives that is not compatible with the lock level, it will be queued, trying to grab

transaction number 520.
The remaining transactions are queued behind transaction 521.
If transaction 520 is released, transaction 521 acquires a new version of the row, and the next

transaction is an arbitrary transaction from the "heap" of waiting transactions. We can say that there is
the first in line to acquire the lock and all the rest.
The first in line can be overtaken by a transaction whose row lock level is compatible with the level of

the transaction that already locked the row.

115Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• there is the first in line and the rest
• the first in line can be overtaken by a transaction whose row lock level

is compatible with the level of the transaction that already locked the
row

• if the first in the queue gets a lock, then a transaction is randomly
selected to take its place, regardless of the waiting time

Queue when row is locked

520
(update)

521
(update)

524
(update)

527
(update)

528
(update)

xmax=520xmin=500 1, foo

Practice

Insert, update and delete a row
Row version visibility at different isolation levels
Transaction status by CLOG
Table Lock
Line lock

116Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Insert, update and delete a row
2. Row version visibility at different isolation levels
3. Transaction status by CLOG
4. Table Lock
5. Line lock

Practice

117Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Routine maintenance tasks

2c PostgreSQL Architecture

Autovacuum

Routine Vacuuming is performed by autovacuum workers. Autovacuum selects tables in which
autovacuum_vacuum_scale_factor has changed from the table size or
autovacuum_vacuum_insert_scale_factor has been inserted from the table size. The default values are
set to 20%. During the vacuuming process:
1) versions of table rows that have gone beyond the database horizon are cleared. Blocks that contain

only current row versions are skipped
2) records in index blocks that point to row versions being cleared are cleared
3) a visibility map file is created or updated
4) free space map files are created or updated
5) TOAST table and TOAST index row versions are cleared
If a table's row version freeze was performed more than autovacuum_freeze_max_age transactions

ago. The xid of the last freeze is stored for tables in the relfrozenxid and relminmxid columns of the
pg_class system catalog table. The default value is 200 million if the transaction counter is 32-bit
(PostgreSQL and Tantor Postgres BE) or 10 billion if 64-bit (in Tantor Postgres SE). Periodic freezing is
necessary to prevent the issuance of new transaction numbers from stopping and stopping service
until the freeze is performed.
Autovacuum requests a SHARE UPDATE EXCLUSIVE level lock and if it cannot obtain a lock on a table,

then that table is not vacuumed in this autovacuum cycle.
After vacuuming the table , performs autoanalysis if more than autovacuum_analyze_scale_factor

(default 10%) of the table rows have changed.
Autovacuum does not process temporary tables. Autovacuum does not work on physical replicas,

since the changes made by Autovacuum on the master are transmitted via the log.
https://docs.tantorlabs.ru/tdb/en/17_5/se/routine-vacuuming.html

118Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• is performed by the working processes of the autovacuum
• tables are selected in which more than 20% of the table size

was updated or inserted
• if there has not been a line version freeze for a long time,

then a freeze is performed
• after vacuuming the table, it performs an autoanalysis
• Autovacuum requests a SHARE UPDATE EXCLUSIVE level

lock and if it cannot obtain a lock on a table, then that table is
not vacuumed in this autovacuum cycle.

• autovacuum does not process temporary tables

Autovacuum

Представление pg_stat_progress_vacuum

pg_stat_progress_vacuum view contains one row for each server process executing the VACUUM
command and each autovacuum worker executing a vacuum at the time the view is accessed.
VACUUM FULL executions are tracked through the pg_stat_progress_cluster view. VACUUM FULL is a

special case of the CLUSTER command and is executed by the same code. It is optimal to use
CLUSTER instead of VACUUM FULL, since it creates data files with rows in sorted order.
The ANALYZE command is tracked through the pg_stat_progress_analyze view.
The phase column reflects the current vacuum phase: initializing (preparatory, happens quickly)
, scanning heap, vacuuming indexes, vacuuming heap, cleaning up indexes,
truncating heap, performing final cleanup .
The columns heap_blks_total , heap_blks_scanned , heap_blks_vacuumed give values in

blocks. The values can be used to estimate the table size and how many blocks have already been
processed (estimate the progress of the cleaning).
max_dead_tuples - An estimate of the maximum number of TIDs that will fit in the memory limited by

the autovacuum_work_mem or maintenance_work_mem parameter in effect for the process to which
the view row belongs.
num_dead_tuples - the number of TIDs currently placed in the memory structure. If the number

reaches the value at which memory is exhausted (max_dead_tuples), the index cleaning phase will
begin and the value in the index_vacuum_count field will be incremented .
At the same time, you can use the pg_stat_activity view, which also displays the activities of server

processes and autovacuum workers. This view is useful because it shows whether a process is waiting
for something.
When switching to table vacuuming, the parameters with which the process will operate are read and

the values cannot be changed until the table vacuuming is completed.

119Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• contains one row for each server process executing the VACUUM
command and each autovacuum worker executing a vacuum at the
time the view is accessed

• The phase column reflects the current vacuum phase: initializing
(preparatory, happens quickly) , scanning heap, vacuuming
indexes, vacuuming heap, cleaning up indexes, truncating
heap, performing final cleanup (final)

• by columns heap_blks_total , heap_blks_scanned ,
heap_blks_vacuumed evaluate the progress of the cleaning

• num_dead_tuples - the number of TIDs currently placed in the
memory structure. If max_dead_tuples is reached , the value in
index_vacuum_count will be increased

• VACUUM FULL is tracked via pg_stat_progress_cluster
• ANALYZE is tracked via pg_stat_progress_analyze

View pg_stat_progress_vacuum

VACUUM command parameters

Vacuum can be called manually, it will be executed by the server process. The execution algorithm is
the same as autovacuum and the program code is the same, only the command can be passed
execution options. It makes sense to execute the VACUUM command after creating tables or loading
data. Parameters:
DISABLE_PAGE_SKIPPING processes all table blocks without exception. If blocks are locked, waits

for a lock to be acquired. Includes the FREEZE option.
SKIP_LOCKED false - does not allow skipping locked objects, table sections, blocks
INDEX_CLEANUP auto/on/off specifies whether to process indexes. OFF is used when approaching

wrap around, when dead rows need to be removed from table blocks faster.
PROCESS_TOAST false - disables processing of TOAST tables
PROCESS_MAIN false - disables table processing and handles TOAST
TRUNCATE false - disables the fifth phase. In this phase, an exclusive lock is set. If the wait is longer

than 5 seconds for each table, the phase is skipped. When queuing, an exclusive lock makes all
commands that want to work with the table wait. You can set the vacuum_truncate off parameter at the
table level.
PARALLEL n . The number n limits the number of background processes. They are also limited by the

value of the max_parallel_maintenance_workers parameter. Parallel processes are used if the index size
exceeds min_parallel_index_scan_size and there is more than one such index. Does not affect the
analysis, only the index processing phase.
FULL - full cleanup, uses exclusive locks acquired sequentially on each table processed. Requires

additional disk space because new files are created and old files are not deleted until the end of the
transaction. It may be worth using the CLUSTER command , as it is the same but orders the rows.

120Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• DISABLE_PAGE_SKIPPING processes all table blocks without
exception

• SKIP_LOCKED false - does not allow skipping locked objects, table
sections, blocks

• INDEX_CLEANUP auto/on/off specifies whether to process indexes.
OFF is used if you need to quickly remove dead rows from table
blocks.

• PROCESS_TOAST false - disables processing of TOAST tables
• TRUNCATE false - disables the fifth phase
• PARALLEL n . The number n limits the number of background

processes.
• FULL - full cleanup, uses exclusive locks, sequentially set on each

processed table

VACUUM command parameters

VACUUM Command Parameters (continued)

SKIP_DATABASE_STATS disables updating the pg_database.datfrozenxid number - the oldest
unfrozen XID in database objects. To get the value, a query is performed relfrozenxid, relminmxid from
pg_class using a full scan (there is no index on these columns and it is not needed) . If the size of
pg_class is large, then the query wastes resources. You can disable this and leave it for any VACUUM
on any table, for example, once a day, or use:
VACUUM (ONLY_DATABASE_STATS VERBOSE) which will not clean anything, but will only update the

value of pg_database.datfrozenxid .
VERBOSE - displays command execution statistics. Does not add additional load, recommended to

use.
ANALYZE - updates statistics. The update is performed separately. Combining vacuuming and analysis

in one command does not provide any performance advantages.
FREEZE - freezes rows in all blocks except those in which all rows are current and frozen. This is

called "aggressive" mode. Adding the FREEZE hint is equivalent to running the VACUUM command with
the vacuum_freeze_min_age=0 and vacuum_freeze_table_age=0 parameters . In FULL mode,
using FREEZE is redundant, since FULL also freezes rows.
BUFFER_USAGE_LIMIT buffer ring size instead of the vacuum_buffer_usage_limit
configuration parameter (range from 128K to 16M, default 256M). Unlike the configuration
parameter, BUFFER_USAGE_LIMIT can be set to zero . In this case, the buffer ring is not used and the
blocks of all objects processed by the command, both during cleaning and during analysis, can occupy
all buffers. This will speed up the vacuuming and, if the buffer cache is large, will load the processed
blocks into it. Command example:
VACUUM(ANALYZE , BUFFER_USAGE_LIMIT 0);
If autovacuum is started to protect against transaction counter overflow, the buffer ring is not used

and autovacuum is performed in aggressive mode.

121Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• SKIP_DATABASE_STATS disables updating pg_database.datfrozenxid
› allows you to avoid performing a full scan of the pg_class table

• VERBOSE - displays command execution statistics
• FREEZE - freezes rows in all blocks except those in which all rows are

current and frozen
• BUFFER_USAGE_LIMIT buffer ring size instead of
vacuum_buffer_usage_limit
› Unlike the configuration parameter, BUFFER_USAGE_LIMIT can be set to

zero and the buffer ring will not be used.

VACUUM command parameters

default_statistics_target parameter

To collect statistics, a random sample of rows equal to 300*default_statistics_target is used
. The default value is 100. The maximum value is 10000. The default value is sufficient for a
representative sample and sufficient accuracy. In addition, the parameter sets the number of most
frequently occurring values in table columns (pg_stats. most_common_vals) and the number of
bins in the histograms of the distribution of values in columns (pg_stats. histogram_bounds). If
there are many rows in the table, the distribution of values is uneven, then you can increase the value
for the table column using the command:
alter table test alter column id set statistics 10000;
and the planner will calculate the cost more accurately.
The higher the value, the more time it will take for automatic analysis and the volume of statistics will

be larger.
A value of -1 reverts to using the default_statistics_target parameter . The command

acquires a SHARE UPDATE EXCLUSIVE lock on the table .
For indexes where expressions are indexed (function-based index), the value can be set with the

command:
alter index test alter column 1 set statistics 10000;
Since expressions do not have unique names, the ordinal number of the column in the index is

specified. The range of values is: 0..10000; The value -1 returns to the application of the
default_statistics_target parameter .
A parameter value in the range from 100 to 10000 does not affect the duration of the autoanalysis

cycle.

122Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• sets
› number of most common values in table columns (

pg_stats.most_common_vals)
› number of bins in histograms of distribution of values in columns (

pg_stats.histogram_bounds)
› number of rows (default_statistics_target * 300) of a random

sample for which statistics are collected
• default 100
• maximum value 10000
• can be set for a specific table column or index by expression:

default_statistics_target parameter

alter table test alter column id set statistics 10000;
alter index test alter column 1 set statistics 10000;

Bloat tables and indexes

Old row versions are stored in table blocks. Indexes store references to row versions, including old
versions. Autovacuum may fail to process a table because the database horizon has not been shifted
for a long time or a lock incompatible with autovacuum was set on the table at the time of access. In the
second case, autovacuum skips processing the table. This leads to an increase in the size of table and
index files. After autovacuum has completed its work, the file sizes are unlikely to decrease. The blocks
will be used in the future for new row versions. Bloat of tables and indexes can be considered an
increase in size so that the free space will not be used in the near future. If the object size is large, the
unused space may be noticeable to the administrator. You can find tables with unused space and run
maintenance tasks using the Tantor Platform.
You can estimate unused space based on basic statistics collected by autoanalysis. Objects are

unlikely to bloat quickly, so you don't need to monitor them often. Monitoring free disk space is more
relevant. The accuracy of the estimate can be verified (compared with reality) by performing a full
vacuum (CLUSTER or VACUUM FULL) and comparing the result with the estimate.
You can use the functions of the standard pgstattuple extension:
create extension pgstattuple;
\dx+ pgstattuple
select relname, b.* from pg_class, pgstattuple_approx(oid) b WHERE relkind='r' order by 9 desc;
select relname, b.* from pg_class, pgstatindex(oid) b WHERE relkind='i' order by 10;

Оценивать можно по столбцам dead_tuple_percent для таблиц и avg_leaf_density для
индексов:
relname | t
table_len | 8192
scanned_percent | 100
approx_tuple_count | 1
approx_tuple_len | 32
approx_tuple_percent | 0.390625
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
approx_free_space | 8112
approx_free_percent | 99.0234375

123Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• autovacuum may not process the table due to the following:
› the database horizon has not moved for a long time
› at the moment the autovacuum accessed the table, a lock incompatible with

the autovacuum was installed on it
• After the autovacuum has worked, the file sizes are unlikely to decrease
• blocks will be used in the future for new versions of lines
• there is no need to monitor too often, it is more important to check the free

space on the disks
• extension for row version count estimation:

Bloat tables and indexes

create extension pgstattuple;
\dx+ pgstattuple
select relname, b.* from pg_class, pgstattuple_approx(oid) b WHERE relkind='r';
select relname, b.* from pg_class, pgstatindex(oid) b WHERE relkind='i' order by 10;

Heap Only Tuple Optimization

When updating a row, a new row is created inside the table block. If the fields that were TOASTed
were not changed, then the contents of the fields that reference TOAST will be copied without changes
and there will be no changes in TOAST.
If indexes are created on any columns of the table, the index records point to the ctid of the previous

version of the row. The index records point to a field in the block header.
If only fields that are not mentioned in any index (except brin indexes) are changed , then no changes

are made to the indexes.
Partial index:
create index t5_idx on t5 (c1) where c1 is not null;
does not allow HOT to be executed if the UPDATE command mentions column c1 even if the UPDATE

contains the condition WHERE c1 is null.
Similarly, a partial covering index:
create index t5_idx1 on t5 (c1) include (c2) where c1 is not null;
prevents HOT from being executed if columns c1 and c2 are mentioned in the UPDATE command.
From the index, the server process gets to the old version of the row, sees the HEAP_HOT_UPDATED

bit, moves along the t_ctid field to the new version of the row (taking into account the visibility rules, if it
sees this version, then the server process stops on it), checks the same bit, if it is set, then moves on to
a newer version of the row. Such versions of the row are called a HOT chain of versions (HOT chain).
Taking into account the visibility rules, the server process can reach the most recent version of the row,
on which the HEAP_ONLY_TUPLE bit is set, and stop on it.
If the new row version is located in a different block than the old row version, HOT does not apply.

The t_ctid field of the old version will point to the newer version in a different block, but the
HEAP_HOT_UPDATED bit will not be set. The old version will become the last in the chain of HOT
versions. New entries will be created in all indexes on the table pointing to the new row version.

124Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When updating (UPDATE) rows, changes may not be made to indexes
• changes do not go beyond the table block (heap only)
• conditions:

› only fields that are not included in any of the indexes (except for brin type
indexes) on the table are changed

› the new version of the line is placed in the same block as the previous
version

• if the new version of the row is located in a block different from the one in
which the previous version of the row is located, then:
› the previous version will become the last in the chain of HOT versions
› new records will be created in all indexes on the table pointing to the new

row version

Heap Only Tuple optimization

HOT update monitoring

HOT statistics are available in two views pg_stat_all_tables and pg_stat_user_tables :
select relname, n_tup_upd, n_tup_hot_upd, n_tup_newpage_upd,
round(n_tup_hot_upd*100/n_tup_upd,2) as hot_ratio
from pg_stat_all_tables where n_tup_upd<>0 order by 5;
relname | n_tup_upd | n_tup_hot_upd | n_tup_newpage_upd | hot_ratio
---------------+-----------+----------------+-------------------+------------
pg_rewrite | 14 | 9 | 5 | 64.00
pg_proc | 33 | 23 | 10 | 69.00
pg_class | 71645 | 63148 | 8351 | 88.00
pg_attribute | 270 | 267 | 3 | 98.00

Statistics are accumulated since the last call to the pg_stat_reset() function .
pg_stat_reset() resets the cumulative statistics counters for the current database, but does not

reset the cluster-level counters. Resetting the counters resets the counters by which autovacuum
decides when to run vacuuming and analysis. After calling the function, it is recommended to run
ANALYZE on the entire database. Cluster-level statistics accumulated in the pg_stat_* views are
reset ("reset") by calling the function:
select pg_stat_reset_shared('recovery_prefetch');
select pg_stat_reset_shared('bgwriter');
select pg_stat_reset_shared('archiver');
select pg_stat_reset_shared('io');
select pg_stat_reset_shared('wal');

Starting with version 17, pg_stat_reset_shared(null) resets all these caches; in version 16, it
does nothing.
How to perform monitoring? For example, if you created an additional index or increased the number

of sections of a partitioned table, you should check how the percentage of HOT updates has changed.
n_tup_hot_upd is the HOT update counter, n_tup_upd is all updates.
Approximate estimate of the number of dead lines:
select relname, n_live_tup, n_dead_tup from pg_stat_all_tables where
n_dead_tup<>0 order by 3 desc;

125Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• HOT statistics are available in the pg_stat_all_tables and
pg_stat_user_tables views.

• The HOT update counter is collected for each table and is reflected in the
column: n_tup_hot_upd

• all updates are reflected in the n_tup_upd column
• cases when during the update there was no space for the new version of the

line and the HOT chain was broken, and the new version was inserted into
another block shows n_tup_newpage_upd

• statistics for the database are reset by calling the pg_stat_reset()
function ;
› After calling the function, it is recommended to perform ANALYZE on the entire

database

HOT update monitoring

select relname, n_tup_upd, n_tup_hot_upd, n_tup_newpage_upd,
round(n_tup_hot_upd*100/n_tup_upd,2) as hot_ratio from pg_stat_all_tables where n_tup_upd<>0
order by 5;

relname | n_tup_upd | n_tup_hot_upd | n_tup_newpage_upd | hot_ratio
---------------+-----------+---------------+-------------------+-----------
pg_rewrite | 14 | 9 | 5 | 64.00
pg_proc | 33 | 23 | 10 | 69.00
pg_class | 71645 | 63148 | 8351 | 88.00

Влияние FILLFACTOR на HOT cleanup

HOT cleanup is important and in many cases actively works. If the HOT conditions are met, then when
updating rows in a block, the new version searches for a place in the block and a chain of versions is
created. If the inserted new version of the row fits into the block and the fill percentage exceeds the
min(90%, FILLFACTOR) boundary, then a flag will be set in the block header that the block can be
cleaned. The next update of the block row will perform HOT cleanup - it will clean the block from rows
in the chain of versions that have gone beyond the horizon of the base and the new version of the row
will most likely fit into the block.
But if the fill percentage has not exceeded the min(90%, FILLFACTOR) boundary, and the new version

does not fit into the remaining space in the block, then fast clear is not performed, the row version is
inserted into another block, the HOT chain is broken, and a flag is inserted into the block header that
there is no space in the block. This will happen if the block has less than 9 rows and
FILLFACTOR=100% (the default value). In this case, it may be worth setting FILLFACTOR to a value at
which the new row version fits in the block and at the same time crosses the FILLFACTOR boundary.
You should not design tables so that the row size is so large that less than 6 rows fit in a block.
create table t(s text storage plain) with (autovacuum_enabled=off);
insert into t values (repeat('a',2010));
update t set s=(repeat('c',2010)) where ctid::text = '(0,1)';
update t set s=(repeat('c',2010)) where ctid::text = '(0,2)';
update t set s=(repeat('c',2010)) where ctid::text = '(0,3)';
select ctid,* from heap_page('t',0);
ctid | lp_off | ctid | state | xmin | xmax | hhu | hot | t_ctid | multi
-------+--------+-------+--------+-------+-------+-----+-----+--------+-------
(0,1) | 6136 | (0,1) | normal | 1001c | 1002c | t | | (0,2) | f
(0,2) | 4096 | (0,2) | normal | 1002c | 1003c | t | t | (0,3) | f
(0.3) | 2056 | (0.3) | normal | 1003c | 1004 | | t | (1,1) | f
(3 rows)
select ctid from t;
ctid

(1 ,1)
The fourth version of the string was inserted into the second block.
The graph on the slide will be discussed in the practice for this chapter.

126Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• For HOT cleanup to be executed, the previous UPDATE of the row must
exceed the min(90%, FILLFACTOR) boundary

• if the size of the rows in the table is such that less than 9 rows fit into
the block, then the eighth row will not exceed the 90% limit, and the
ninth row will be more than 11% of the block size and will not fit into the
block

• The most effective way to design data storage schemes is to make the
row size small. A reasonable row size is no more than 600 bytes

Impact of FILLFACTOR on HOT cleanup

In-page clearing in tables

A server process executing SELECT and other commands can remove dead tuples (row versions that
have passed the database visibility horizon, xmin horizon) by reorganizing the row versions within a
block. This is called in-page cleanup.
HOT cleanup/pruning is performed if one of the following conditions is met:
the block is more than 90% full or FILLFACTOR (default 100%).
the PD_PAGE_FULL hint in the block header).
Intra-page cleaning works within one table page, does not clean index pages (index pages have a

similar algorithm), does not update the free space map and the visibility map.
In fact, page pruning was designed specifically for cases where autovacuum wasn't running or

couldn't keep up.
The pointers (4 bytes) in the block header are not freed, they are updated to point to the current

version of the row. The pointers cannot be freed because they may be referenced by indexes, which
the server process cannot check. Only a vacuum can free the pointers (make the pointers unused) so
that the pointer can be used again. In the version data area, the dead tuples are cleared and the
remaining rows are shifted.

127Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When performing SELECT and UPDATE, the server process can remove dead
tuples (row versions that have passed the database visibility horizon, xmin
horizon) by reorganizing the row versions within the block

• in-page cleanup is compatible with HOT and can pre-free space that will be
used by new row versions resulting from an UPDATE

• is fulfilled if:
› the block is more than 90% full or FILLFACTOR (default 100%)
› a previously executed UPDATE was unable to place a new row version into this

block
• rough estimate of row versions that can be purged: pg_stat_all_tables.n_
dead_tup

In-page clearing in tables

In-page cleaning in indexes

If during Index Scan the server process detects that a row (or a chain of rows referenced by the index
record) has been deleted and has gone beyond the database horizon, the LP_DEAD (known dead, killed
tuple) hint bit is set in the lp_flags of the leaf page index record. The bit can be viewed in the dead
column returned by the bt_page_items('t_idx',block) function . It is not set during Bitmap
Index Scan and Seq Scan. A row marked with such a flag will be deleted later when executing a
command that makes changes to the index block. Why is index space not freed immediately? Index
scans are performed by SELECT, which sets shared locks on the object and pages. Hint bits in both
index blocks (flags) and table blocks (infomask and infomask2) can change with such locks. Other
changes to the block require an exclusive lock on the block and another lock on the object itself.
SELECT will not set them. Because of this, marking the record and freeing up space are separated in
time.
Returning to the block and setting a flag in it adds overhead and increases the execution time of the

command, but it is done once. However, subsequent commands will be able to ignore the index entry
and will not access the table block.
No changes can be made to the block on replicas, and SELECT does not set hint bits on replicas.

Moreover, LP_DEAD ("ignore_killed_tuples") set on the master is ignored on replicas. Changing the
LP_DEAD bit is not logged, but the block is dirty and transmitted via full_page_writes. Because of this
feature, queries on the replica can be executed an order of magnitude slower than on the master . After
autovacuum on the master has been processed and the journal records generated by autovacuum on
the replica have been applied, there will be no difference in speed.
Example of SELECT with bits set on 899900 deleted rows in 7308 table blocks:
Buffers: shared hit=11489 index and table blocks are being read
Execution Time: 218.600 ms
The same SELECT again on blocks that haven't been cleared yet:
Buffers: shared hit=2463 index blocks and several table blocks were read
Execution Time: 8.607 ms
After REINDEX or vacuuming the table (the result is approximately the same):
Buffers: shared hit=6 multiple index and table blocks were read
Execution Time: 0.373 ms

128Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• performed during index scan
• If a row in a table is deleted, the index entry for the row or version chain may

be marked with the LP_DEAD flag.
• the mark can be set by the SELECT command
• no journal entry is created but the block gets dirty
• marked index entry ignored on master but not on replica
• The marked index entry will be cleared when executing commands that

change data in the table.

In-page cleaning in indexes

create table t (id int primary key, c text) with (autovacuum_enabled = off);
insert into t SELECT i, 'simple delete ' || i from generate_series(1, 1000000) as i;
delete from t where id between 100 and 900000;
analyze t;
explain (analyze, buffers, costs off) select * from t where id between 1 and 900000;
Index Scan using t_pkey on t (actual time=0.010..218.477 rows=99 loops=1)
Buffers: shared hit=11489
Execution Time: 218.600 ms

Evolution of indexes: creation, deletion, rebuilding

Creating, deleting, rebuilding an index without specifying CONCURRENTLY:
create index name..;
drop index index_name;
reindex index index_name;
sets a SHARE lock that is incompatible with making changes to table rows. The SHARE lock only allows

the following commands to work:
1) SELECT and any query that only reads the table (i.e. sets an ACCESS SHARE lock)
2) SELECT FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE, FOR KEY SHARE (set ROW SHARE lock)
3) CREATE/DROP/REINDEX INDEX (without CONCURRENTLY). You can simultaneously create, drop,

rebuild several indexes on one table , since the SHARE lock is compatible with itself. CONCURRENTLY is
not compatible with SHARE.
"Not compatible" means that either the command will wait, or will return an error immediately, or will

return an error after a timeout specified by the lock_timeout parameter .
For temporary indexes on temporary tables, you do not need to use CONCURRENTLY, since there are

no locks on temporary objects, only one process has access to them, even parallel processes do not
have access.
create index concurrently name..; sets a SHARE UPDATE EXCLUSIVE lock, which allows

SELECT, WITH, INSERT, UPDATE, DELETE, MERGE commands to be executed and enables the use of
the fastpath for locking objects by processes.
The SHARE UPDATE EXCLUSIVE lock is also set by the commands DROP INDEX CONCURRENTLY,

REINDEX CONCURRENTLY, as well as VACUUM (without FULL), ANALYZE, CREATE STATISTICS,
COMMENT ON, some types of ALTER INDEX and ALTER TABLE, autovacuum and autoanalysis. These
commands cannot work with one table at a time . Autovacuum skips tables if it cannot immediately
obtain a lock. Autovacuum is incompatible with creating, deleting, and recreating indexes.
CONCURRENTLY has a significant drawback. Without CONCURRENTLY the table is scanned once,

with CONCURRENTLY the table is scanned twice and three transactions are used.

129Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• create/drop/reindex index index_name commands place a SHARE
lock that is incompatible with changes to table rows

• these commands can be executed simultaneously, they are compatible
with themselves, but are not compatible with concurrently

• autovacuum is not compatible with either concurrently or without
• for temporary indexes on temporary tables, there is no need to use

concurrently, since there are no locks on temporary objects
• create/reindex concurrently scans the table twice , without
concurrently once

• concurrently allows SELECT, WITH, INSERT, UPDATE, DELETE,
MERGE commands to be executed and allows using the fastpath for
locking objects (tables, indexes, sections)

Evolution of indexes: creation, deletion, rebuilding

Partial indexes

Partial indexes are created on a portion of the table rows. The portion of the rows is determined by the
WHERE predicate, which is specified when creating the index and makes the index partial.
The index size can be significantly reduced and vacuuming will be faster, since vacuuming scans all

index blocks. Partial indexes can be created. This is useful if the application does not work with
unindexed rows. When creating an index, a WHERE condition can be specified . The index size can be
significantly reduced and vacuuming will be faster, since vacuuming scans all index blocks.
Partial indexes are useful because they avoid indexing the most frequently occurring values. A most

frequently occurring value is a value that is present in a significant percentage of all rows in a table.
When searching for the most frequently occurring values, the index will not be used anyway, since it
would be more efficient to scan all rows in the table. There is no point in indexing rows with the most
frequently occurring values. By excluding such rows from the index, you can reduce the size of the
index, which will speed up the vacuuming of the table. It also speeds up changes to table rows if the
index is not affected.
The second reason why a partial index is used is when there are no requests to some of the table

rows, and if there are requests, then not index access is used, but a full table scan.
A partial index can be unique.
It is not worth creating a large number of partial indexes that index different rows. The more indexes

on a table, the lower the performance of commands that change data; autovacuum; the probability of
using the fast path of locks decreases.
https://docs.tantorlabs.ru/tdb/en/17_5/se/indexes-partial.html

130Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are created based on a portion of the table rows
• The WHERE predicate is specified when creating an index and

determines the rows to be indexed.
• are useful because they allow you to avoid indexing the most

frequently occurring values
• partial index can be unique
• the size of a partial index is usually smaller
• Example of creating a partial index:

Partial indexes

create unique index t1_idx1 ON t1 (c2 desc nulls first , upper(c1))
include (c3,c4) WHERE c2>0 ;

REINDEX Team

The REINDEX command rebuilds indexes. REINDEX is similar to dropping and recreating an index,
because the index contents are rebuilt from scratch. However, locking is handled differently. REINDEX
blocks writes, but not reads, of the index's parent table. It also takes an ACCESS EXCLUSIVE lock on
the index it is processing, which blocks reads that attempt to use that index. In particular, the query
planner tries to take an ACCESS SHARE lock on every index on the table, regardless of the query, so
REINDEX blocks almost all queries except for some prepared queries whose plan was cached and that
do not use that same index.
To rebuild one index:
REINDEX INDEX index_name;
If you need to rebuild all indexes on a table:
REINDEX TABLE table_name;
You can also rebuild indexes within a specific schema or even the entire database:
REINDEX SCHEMA schema_name;
REINDEX DATABASE; you can rebuild indexes on tables of the current database only, except for

indexes on tables of the system catalog
REINDEX SYSTEM; rebuilding indexes on system catalog tables
When rebuilding, you can move indexes to another tablespace; to do this, simply specify the option:
REINDEX (TABLESPACE name) ..;
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-reindex.html

131Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• rebuilds indexes
• REINDEX blocks almost all queries except prepared queries whose plan was

cached and which do not use a rebuildable index.
• To rebuild one index:
• REINDEX INDEX index_name;
• If you need to rebuild all indexes on a table:
• REINDEX TABLE table_name;
• You can also rebuild indexes within a specific schema or even the entire

database:
• REINDEX SCHEMA schema_name;
• REINDEX DATABASE; you can rebuild indexes on tables of the current

database only, except for indexes on tables of the system catalog
• REINDEX SYSTEM; rebuilding indexes on system catalog tables

REINDEX Team

REINDEX CONCURRENTLY

Rebuilds an index, locking it with a SHARE UPDATE EXCLUSIVE lock on the index, which is compatible
with commands that change rows in a table. The command is executed as follows:
1) An index definition is added to pg_index that will replace the index being rebuilt. To prevent any

schema changes during the operation, the indexes being rebuilt, as well as their associated tables, are
protected by a session-level SHARE UPDATE EXCLUSIVE lock.
2) For each index being rebuilt, the first pass is performed, in which the index is built. When the index

is built, its pg_index.indisready flag is set to true so that the index is ready for additions, and thus
becomes visible to other transactions that started after the index rebuild. This action is performed in a
separate transaction for each index. Transactions that started before the index rebuild is complete do
not see or use the new indexes.
3) A second pass is performed, in which the records added to the table during the first pass are added

to the index. This action is also performed in a separate transaction for each index.
4) Integrity constraints that used the indexes being rebuilt are switched to defining a new index and

the index names are changed. At this point, the pg_index.indisvalid flag of the new index is set to true,
and the old index is set to false, and the system catalog caches are flushed, and all sessions that
accessed the old index will work with the new index structure. The pg_index.indisready flag of the old
index is reset to false to prevent new records from being added to it as soon as the current queries that
could access this index are completed.
5) Old index structures are dropped. Session-level SHARE UPDATE EXCLUSIVE locks on indexes and

tables are released.
The rebuild may fail, in which case REINDEX CONCURRENTLY aborts but leaves behind a non-working

new index in addition to the one being rebuilt. This index will be ignored by queries but will be updated
when data changes, which will increase overhead. The psql \d command marks such indexes as
INVALID.

132Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• non-blocking index rebuild
• for each index being rebuilt, a first pass is performed, in which the index is

built
• a second pass is performed, in which the records added to the table during

the first pass are added to the index
• integrity constraints that used rebuildable indexes are switched to define a

new index and the index names are changed
• old index structures are deleted
• the locks are removed
• The rebuild may fail, in which case REINDEX CONCURRENTLY aborts but

leaves behind a broken new index in addition to the one being rebuilt. This
index will be ignored by queries but will be updated when data changes,
which will incur overhead.

REINDEX CONCURRENTLY

HypoPG expansion

When configuring query execution, a question may arise: if you create an index with the desired
parameters, will this index be used by the planner to execute the queries that are optimized? You don't
want to create a real index, because it can affect the operation of application sessions - slow down
commands that change data; creating an index takes a lot of time. The extension allows you to create a
definition of indexes that exist only in the current session and do not affect the operation of other
sessions. This definition (hypothetical index) is taken into account when creating an execution plan in
the session where it is created as existing. When executing a command and during EXPLAIN (analyze),
such an index is not used. Also, in the current session, you can hide any indexes from the planner,
including existing ones, and see how this affects the generated command execution plans.
The extension has two views where you can see which indexes are hidden in the current session and

which hypothetical indexes exist: hypopg_hidden_indexes, hypopg_list_indexes .
Working with indexes is performed using eleven functions included in the extension. Hypothetical

indexes are created by the hypopg_create_index('CREATE INDEX...') function , which is
passed the text of the index creation command. Hiding any index, including a regular index, from the
scheduler in the current session is performed by calling the function:
hypopg_hide_index('index_name'::regclass);
The execution plan is viewed using the EXPLAIN command.
https://docs.tantorlabs.ru/tdb/en/17_5/se/hypopg.html

133Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• installed by the CREATE EXTENSION hypopg command;
• used when configuring the execution of SQL commands
• allows you to create a definition of indexes that exist only in the current

session and do not affect the operation of other sessions
• allows you to find out whether the scheduler will use the index when

executing specific commands without creating the index
• The extension allows you to hide any existing indexes in the current

session so that they do not affect the scheduler
• hypothetical indexes are created by the function
hypopg_create_index('CREATE INDEX...') , which is passed the
text of the index creation command

HypoPG expansion

Transaction counter

Transaction (xid) and multitransaction (mxid) counters are used to track the order of transactions and
determine which row versions can be seen by each transaction. In PostgreSQL, the transaction counter
is implemented as a 32-bit value. To prevent the counter from overflowing, row versions are "frozen",
meaning that a single, current row version is visible across all snapshots.
For a 32-bit transaction counter (XID) in PostgreSQL, the maximum value is 4 billion. When this limit is

reached, the transaction counter rolls over "zero" and transaction numbering starts from 3. Values 0, 1,
2 are not used for normal transactions. For example, xid=2 is a sign of a frozen row. xid=0 in the xmax
field means that the row version was not deleted.
The numbers of the oldest unfrozen transactions are stored in the pg_database in the datfrozenxid

and datminmxid columns. If the current transaction number is slightly less than 2 billion away from the
values, new transaction numbers will no longer be issued to server processes. The values can be
updated by vacuuming with freezing the tables. The values are determined by one of the tables that
has not been frozen for the longest time. By vacuuming this table, the values will be set to the next
oldest table that has not been frozen for a long time.
Tantor Postgres SE uses a 64-bit transaction counter. There are no problems with counter overflow on

64-bit transaction counters. The only thing is that if a query or transaction runs for a long time, and
during this time 2 billion transactions pass, then such transactions and queries should be interrupted.
In PostgreSQL, the 64-bit counter is not enabled because the changes required to the PostgreSQL

code to switch to a 64-bit transaction counter are too large.

134Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• For a 32-bit transaction counter (xid), the maximum value is 4 billion.
• when this limit is reached, the transaction counter rolls over "zero"

and transaction numbering starts from 3
• To prevent the row version counter from overflowing, row versions

are "frozen", which means that the row version is the only one that
is current and visible in all snapshots.

Transaction counter

Practice

Normal table cleaning
Table Analysis
Rebuilding the index
Complete cleaning
HypoPG expansion

135Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Normal table cleaning
2. Table Analysis
3. Rebuilding the index
4. Complete cleaning
5. HypoPG expansion

Practice

136Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Executing queries

2d PostgreSQL Architecture

SQL is a declarative language

SQL (Structured Query Language) is a declarative programming language, meaning you need to
describe what you want to achieve rather than specifying how to do it step by step. Unlike imperative
programming languages, where a program provides a sequence of commands that are executed
according to an algorithm, declarative languages like SQL focus on what needs to be achieved, leaving
the optimization and implementation details to the DBMS.
In SQL, you formulate queries by specifying what data you want to retrieve or what operations you

want to perform, but you do not say how the system should do it. SQL is a more abstract and data-
friendly language, allowing the system to optimize query execution and hide the details of data storage.
When a user submits a query to the DBMS, the following happens:
Parsing: analyzes the user's request, checks its syntax, and performs semantic analysis to understand

the meaning of the request. Consists of syntactic and semantic analysis.
Rewrite (transformation): the query structure is transformed into an equivalent one, more convenient

for the following steps
Planning: The optimizer creates an optimal query execution plan by deciding which indexes to use,

how to join tables, and in what order to perform operations.
Execution: The query is executed according to the selected plan. This step involves reading rows from

the data blocks, processing the rows, and returning the result.
Note: "query" is a command (statement) like SELECT, INSERT, UPDATE, DELETE, MERGE, VALUES,

EXECUTE, DECLARE, CREATE TABLE AS, CREATE MATERIALIZED VIEW AS . Query does not mean
"request data" (select, choose data), but "request the execution of actions on data processing" .
Commands like create, alter, drop are not called queries, because they are not planned (executed in
one way), change object definitions (metadata), and not application data.

137Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• SQL is a declarative programming language for working with
databases, where the user describes the desired results of a
query without specifying specific execution steps.

• When a user submits an SQL query to the PostgreSQL
database management system (DBMS), the following
happens:
› Parsing (syntactic and semantic analysis) of a request
› Rewriting
› Planning
› Execution

SQL is a declarative language

Syntax parsing

Parsing is the analysis of an input sequence of characters (tokens) to determine the structure of words
according to the rules of the language's grammar. In the context of programming languages or SQL
queries, parsing is used to check whether the input text complies with the correct syntax of the
language.
Steps:
1) Lexical analysis (tokenization): The input string is broken down into a set of tokens representing

minimal syntactic units such as keywords, operators, identifiers, and numbers.
2) Syntax tree construction: Tokens are combined into a data structure called a syntax tree, which

reflects the hierarchy and structure of the language. This tree is an abstract syntactic representation of
the input expression.
) Check for grammar compliance: The parser checks whether the constructed syntax tree complies

with the grammar rules of the language. If not, an error is generated indicating that the syntax is
incorrect.
In the case of an SQL query, checks that the query complies with SQL syntax rules, allowing the query

to be represented (interpreted) and executed.

138Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Syntax parsing

• Syntactic parsing includes the following steps:
› lexical analysis
› constructing a syntax tree
› grammar check

SELECT col1, col2 FROM table1 WHERE col2='test1';
the query test is syntactically correct
SELECT col1, col2 FROM table1 WHERE col2='test1';
the query test is syntactically correct

Semantic analysis

Determining the meaning (semantics): This stage of SQL parsing includes analyzing the meaning of
the query, checking the existence of tables, columns, and consistency of data types.
Checking access rights: does the user have the right to execute the command, access rights to the

objects specified in the request: schemas, tables, functions, views, etc.
This step accesses the system catalog tables that store object definitions. For example, pg_class,
pg_attribute, pg_type, pg_depend, pg_constraint, pg_namespace, pg_inherits,
pg_attrdef, pg_sequence . The retrieved data is cached in the local memory of the process in the
memory structure (called "contexts") CacheMemoryContext , which services the user session. In the
future, if changes are made to the rows of the system catalog tables, the process that makes the
changes transfers the changes to a circular (new messages overwrite old ones in a circle) buffer (
shmInvalBuffer) in shared memory with a size of 4096 messages:
postgres=# select name, size from (select name, lead(off) over(order by off) -
off as size from pg_shmem_allocations) as a where name='shmInvalBuffer';

name | size
----------------+--------
shmInvalBuffer | 291072
(1 row)
If a process has not consumed half of the messages, it is notified to consume the accumulated

messages. This reduces the likelihood that a process will miss messages and will have to clear its local
system directory cache. Shared memory stores information about which processes have consumed
which messages. If a process, despite the notification, does not consume messages (for example, it is
performing an operation and cannot be interrupted), and the buffer is full, the process will have to
completely clear its system directory cache.
Locks are set on all objects that are used in the query and can be used to create a plan: tables,

indexes, table sections. Locks are needed so that while the query is being planned or executed, the
objects used are not deleted or their structure is not changed, which would lead to an error when
creating a plan or executing the query.

139Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• definition of meaning (semantics), checking the existence of
tables, columns, consistency of data types

• checking access rights: does the user have the right to execute
the command, access rights to the objects specified in the
request: schemas, tables, functions, views, etc.
› there is an access to the system catalog tables , which store

object definitions. For example, pg_class, pg_attribute,
pg_type, pg_depend, pg_constraint, pg_namespace,
pg_inherits, pg_attrdef, pg_sequence

› The selected data is cached in the local memory of the process
servicing the user session.

Semantic analysis

Transformation (rewriting) of a query

Query transformation (rewriting) is the transformation of the original query structure into a similar one
in terms of obtaining the result for the purpose of better optimization at the planning and execution
stages.
For example, view names, if any were in the query, are replaced with the queries on which the views

were created.
debug_print_rewritten configuration parameter allows you to see the result of rewriting in the

diagnostic log. Example:
postgres@tantor:~$ cat $PGDATA/log/postgresql-*
STATEMENT: select * from t limit 1;
LOG: rewritten parse tree:
DETAIL: (

{QUERY
:commandType 1
:querySource 0
:canSetTag true
:utilityStmt <>
:resultRelation 0
:hasAggs false
:hasWindowFuncs false
:hasTargetSRFs false
:hasSubLinks false
:hasDistinctOn false
:hasRecursive false
:hasModifyingCTE false
:hasForUpdate false
:hasRowSecurity false

:isReturn false
:cteList <>
:rtable (
{RANGEBLENTRY
:alias <>
:eref
{ALIAS
:aliasname now
:colnames("now")
}
:rtekind 3
...

140Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• transformation of the original query structure into a similar
one in terms of obtaining the result for the purpose of better
optimization at the planning and execution stages for the
purpose of better optimization at the planning and execution
stages
› view names, if any, are replaced by the queries on which the

views are based

Transformation (rewriting) of a query

LOG: rewritten parse tree:
DETAIL: (
{QUERY
:commandType 1
:querySource 0
:canSetTag true
:utilityStmt <>
:resultRelation 0
:hasAggs false
:hasWindowFuncs false
...

Query execution planning (optimization)

This is the process of finding the best way to fulfill a request.
The scheduler (optimizer) is the code (written in C) of the server process that executes the query. The

logic of the code is algorithmic. Possible ways to execute the query are generated, the complexity of
execution is estimated, and the method (plan) of execution with the lowest cost is selected. Statistics
describing objects are used to estimate the cost. For example, the number of rows and blocks in tables,
indexes, the number of unique values in columns, the number of several most frequently occurring
values, etc. The optimizer code contains weighting factors for calculating the cost. Some of the factors
are specified in the configuration parameters so that they can be customized. For example,
seq_page_cost, random_page_cost, parallel_setup_cost, parallel_tuple_cost,
cpu_tuple_cost, cpu_index_tuple_cost, cpu_operator_cost . Configuration parameters that
can incline the optimizer to select methods for sampling and processing data are also taken into
account. The names of most of these parameters begin with enable and there are several dozen of
them. For example: enable_seqscan (ability to scan all table blocks to select rows from them);
enable_nestloop (ability to join sets of rows using nested loops).
The cost calculation includes two parts: computational complexity (processor) and input/output.
The query execution plan can be viewed using the EXPLAIN query command;
Some of the locks on objects that were not used in the created plan are removed.

141Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The goal of this step is to get the best way (plan) to execute
the query.

• Possible ways of executing the query are generated, the
complexity of execution is estimated and the execution
method (plan) with the lowest cost is selected

• The following is used to estimate the cost:
• statistics describing objects
• weighting factors from configuration parameters
• Configuration options that enable the use of string fetching

and processing methods
• The cost calculation includes two parts: computational

complexity (processor) and input/output.

Execution planning (optimization)

Executing a request

Execution is the final step in request processing, where the actions described in the execution plan are
performed.
Reading data: rows are read from blocks of tables, indexes, functions.
Data processing: filtering, sorting, grouping, calculations.
Joining rowsets: If the query involves joining tables or other data sources.
Grouping rows: for example, if group functions like COUNT, SUM, AVG are used, the GROUP BY

expression.
Returning a result: The process of returning strings to the client or to the code that sent the request for

execution.
Resource release: The process that executed the request releases the resources it used: it releases

locks on objects and frees (nominally for reuse or by returning to the operating system) the memory
used to execute the request.

142Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Reading data: rows are read from blocks of tables, indexes,
functions

• Data processing: filtering, sorting, grouping, calculations
• Joining Rowsets: If the query involves joining tables or other data

sources
• Grouping rows: for example, if group functions like COUNT, SUM,

AVG are used
• Return Result: Return strings to the client or to the code that sent

the execution request
• Resource release: Locks are released from objects and memory

used to execute the query is freed

Executing a request

EXPLAIN command

The EXPLAIN command displays the execution plan for the query that is selected as optimal. By default, the
query is not executed.

If you specify the analyze option , the query will be executed, although the rows will not be issued, and only
after the query is executed will a plan with additional details be issued. When using analyze, the actual data will
appear in the plan rows after "(actual ". If you do not need the execution time of the plan row "actual time", you
can specify the " timing off" option, this will allow you to get the actual data in the " Execution Time " row, since
the calls to the counter can be frequent, and calls also take time.
the buffers option - it will show the number of buffers that were read. The buffers indicator has long been

underestimated from an optimization point of view, but its importance has been realized and in PostgreSQL
version 18 the buffers parameter is enabled by default.

Example of using the EXPLAIN command:
postgres=# explain (analyze , buffers) select * from t limit 1;
QUERY PLAN
--
Limit (cost=0.03..0.04 rows=1 width=8) (actual time=0.048..0.067 rows=1 loops=1)
Buffers: shared hit=2
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=8)(actual time=0.015..0.020

rows=1 loops=1)
Buffers: shared hit=2

Planning Time: 0.040 ms
Execution Time: 0.198 ms
The query plan allows you to evaluate the methods used to process the data and whether there were any errors

in predicting the number of rows (the difference between the planned number of rows and the actual rows -
actually read), which are called errors in calculating "cardinality" (a synonym for "power" or even the number of
rows, but these terms are less common, since they are less pretentious) and "selectivity" (the proportion of rows)
- these terms came to SQL from relational theory.

To obtain data on running queries, the pg_stat_activity views and the Tantor Postgres extension
pg_trace are used . For some commands executed manually or automatically, there are the
pg_stat_progress_analyze, pg_stat_progress_cluster, pg_stat_progress_create_index,
pg_stat_progress_basebackup, pg_stat_progress_copy, pg_stat_progress_vacuum views.

https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-explain.html

143Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

EXPLAIN command
• produces a query execution plan

› By default, the request is not executed.
• If you specify the analyze option , the query will be executed, and after

execution, a plan with execution details will be shown.
› without the timing off option " Execution Time " it can give an execution

time that exceeds the real one several times
› The buffers option shows the number of buffers that were read during

scheduling and execution.

postgres=# explain (analyze, buffers) select * from t limit 1;
QUERY PLAN

--
Limit (cost=0.03..0.04 rows=1 width=8) (actual time=0.048..0.067 rows=1 loops=1)
Buffers: shared hit=2
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=8) (actual time=0.015..0.020 rows=1 loops=1)

Buffers: shared hit=2
Planning Time: 0.040 ms
Execution Time: 0.198 ms
(6 rows)

EXPLAIN command parameters

ANALYZE (default false) execute the query but do not send the result to the client. Allows you to
evaluate the actual number of rows, execution time, and use extensions and optimizations, as when
executing a query. ANALYZE for INSERT, UPDATE, DELETE commands performs data changes.
VERBOSE (false) prints additional data in the plan. For example, schema names, table aliases, bind

variable names, query identifier (Query Identifier) so that its execution statistics collected by extensions
(pg_stat_statements) can be found.
COSTS (true) displays the estimated cost of each plan node, rows, and width.
SETTINGS (default false) returns configuration parameters that affect the scheduler, with values

different from the default.
GENERIC_PLAN (false) allows you to display a plan for a query that uses bind variables of the form $1,

$2.. Displays a generic plan that will be used instead of private ones if it is not worse than them. Cannot
be used simultaneously with ANALYZE.
BUFFERS (until version 18, false) provides information about buffers read from the cache (hit) plus

from the operating system (read) from the shared buffer cache (shared) or the local cache for
temporary tables (local). It can return dirty - the number of buffers (already included in read or hit),
which were changed by a request for the first time after the checkpoint. written - the number of dirty
(including earlier requests) buffers that were sent for writing (evicted) because the server process
needed to free the buffer to load another block into the buffer.
SERIALIZE (NONE) includes information about the cost of serializing (allocating memory for a string

buffer) the query output (after a SELECT or RETURNING), converting the data to text or binary format
for sending to the client. This is relevant if fields are selected from TOAST, since by default, data is not
selected from TOAST by the EXPLAIN command. The EXPLAIN command never sends the retrieved
data to the client, so the network transmission cost is not considered. Works only with ANALYZE.
Values: NONE, SERIALIZE [TEXT], SERIALIZE BINARY.
WAL (false) outputs the number of log records, full page images (fpi), and the size of the generated

records in bytes.
TIMING (true) prints the time spent on each node. Can significantly increase the overall query

execution time. Used with ANALYZE.
MEMORY (false) memory used during planning stage
SUMMARY (true if ANALYZE) prints Planning Time after the query plan
FORMAT (TEXT) except TEXT can be XML, JSON, YAML

144Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Параметры команды EXPLAIN
• 12 параметров, указываются в круглых скобках

postgres=# EXPLAIN (analyze, verbose, buffers, serialize text, settings, memory, wal) SELECT *
FROM t WHERE i = 100 AND j = 10;

QUERY PLAN
--
Gather (cost=1000.00..11676.00 rows=10 width=8) (actual time=0.421..65.852 rows=10 loops=1)
Output: i, j
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=4425
->Parallel Seq Scan on public.t(cost=0.00..10675.00 rows=4 width=8)(actual
time=37.521..57.814 rows=3 loops=3)

Output: i, j
Filter: ((t.i = 100) AND (t.j = 10))
Rows Removed by Filter: 333330
Buffers: shared hit=4425
Worker 0: actual time=55.948..55.955 rows=0 loops=1

Buffers: shared hit=1396
Worker 1: actual time=56.416..56.422 rows=0 loops=1

Buffers: shared hit=1399
Query Identifier: 687797574221341570
Planning:
Memory: used=11kB allocated=16kB

Planning Time: 0.054 ms
Serialization: time=0.042 ms output=1kB format=text
Execution Time: 66.150 ms

Tables

Application data is stored in tables. The DBMS has regular tables (heap tables, rows are stored in an
unordered manner), unlogged, temporary, partitioned. Extensions can create new ways of storing data
and methods of accessing them. Tantor Postgres SE has the pg_columnar extension (pgcolumnar
).
The number and order of columns are specified when the table is created. Each column has a name.

After the table is created, you can use the ALTER TABLE command to add and remove columns. When
you add a column, it is added after all existing columns.
The fields for the added column have NULL values by default or are given values specified by the

DEFAULT option. When adding a column, new row versions will not be generated if DEFAULT is set to a
static value. If the value uses a volatile function, such as now() , then when adding a column, all rows
in the table will be updated, which is slow. In this case, it may be more optimal to first add the column
without specifying DEFAULT, then update the rows with UPDATE commands setting the value for the
added column, then set the DEFAULT value with the ALTER TABLE command table ALTER COLUMN
column SET DEFAULT value;
Deleting a column deletes the values in the fields of each row and the integrity constraints that include

the deleted column. If the integrity constraint being deleted is referenced by a FOREIGN KEY, you can
delete it in advance or use the CASCADE option.
You can also change the column type using the ALTER TABLE command table ALTER COLUMN

column TYPE type(dimension);
You can change the type if all existing (non-NULL) values in the rows can be implicitly cast to the new

type or dimension. If there is no implicit cast and you do not want to create one or set it as the default
data type cast, you can specify the USING option and set how to get new values from existing ones.
The DEFAULT value (if defined) and any integrity constraints that the column is a part of will be

converted. It is better to remove integrity constraints before modifying the column type and add the
constraints later.
To view the contents of a block, the functions of the standard pageinpect extension are used.
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-alter.html

145Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• объект в котором хранятся данные
• several types: regular tables (heap tables, rows are stored in

an unordered manner), unlogged, temporary, partitioned
• Extensions can create new ways to store data and access it
• the number and order of columns are specified when

creating a table
• After creating a table, you can add and remove columns.

When adding a column, it is added last - after all existing
columns

• you can change the column type

Tables

Indexes for integrity constraints

If you do not specify an index type in the CREATE INDEX command, a btree index is created. btree is
the most common index type in relational databases, working with many types of data.
For PRIMARY KEY (PK) and UNIQUE (UK) integrity constraints, btree indexes are required. For other

integrity constraints, they are optional and are created if: they speed up queries, do not significantly
slow down data modification, and the space used by the indexes is not critical.
When creating PRIMARY KEY (PK) and UNIQUE (UK) integrity constraints, unique btree indexes are

created. The rules for using indexes with integrity constraints differ from Oracle Database.
For example, in PostgreSQL, without a unique index, PK and UK constraints cannot exist:
ERROR: PRIMARY KEY constraints cannot be marked NOT VALID
and cannot use non-unique indexes:
alter table t3 drop constraint t3_pkey, add constraint t3_pkey primary key using
index t3_pkey1;
ERROR: "t3_pkey1" is not a unique index;
In Oracle Database there is an enabled and disabled state of integrity constraints, an index is created

when an integrity constraint is enabled, and non-unique indexes can be used. Such differences do not
provide advantages or disadvantages, but it is useful to know about the differences when operating
and maintaining tables if you have experience working with DBMSs other than PostgreSQL.
In PostgreSQL, only btree index supports the UNIQUE property (can be unique):
select amname, pg_indexam_has_property(a.oid, 'can_unique') as p from pg_am a
where amtype = 'i' and pg_indexam_has_property(a.oid, 'can_unique') = true order
by 1;
amname | p
--------+---
btree | t

146Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• For PRIMARY KEY and UNIQUE integrity constraints, a unique btree
index is required on the columns that are part of the integrity
constraint.

• other indexes can be used to speed up queries ("analytical indexes"),
full-text search

• indexes speed up row searching and slow down adding, changing, and
deleting rows

• indexes use disk space, size is comparable to table size
• example of replacing an index with another index:

Indexes for integrity constraints

create table t3 (n int4 primary key, m int4);
Indexes:
"t3_pkey" PRIMARY KEY, btree (n)
create unique index concurrently t3_pkey1 on t3 (m,n);
ALTER TABLE t3 DROP CONSTRAINT t3_pkey, ADD CONSTRAINT t3_pkey PRIMARY KEY USING INDEX t3_pkey1;
NOTICE: ALTER TABLE / ADD CONSTRAINT USING INDEX will rename index "t3_pkey1" to "t3_pkey"
Indexes:
" t3_pkey " PRIMARY KEY, btree (m, n)

Methods of accessing data in a query plan

There are many methods (algorithms) for accessing data: Sequential Scan, Index Scan. Index Only
Scan, Bitmap Heap Scan, Bitmap Index Scan, CTE Scan, Custom Scan, Foreign Scan, Function Scan,
Subquery Scan, Table Sample Scan, Tid Scan, Values Scan, Work Table Scan and others. When
parallelizing, the word Parallel is added before the method name in the plan line. Data sources can be
tables, external tables, table functions, etc. Extensions can add their own "methods" (implementation of
the algorithm) of access, for example, for a table - in the Custom Scan method .
For regular tables, the methods are divided into tabular - Sequential and using indexes - Index, Index

Only, Bitmap Heap, Bitmap Index. For the Bitmap method, a bitmap is built. The map is built by the
Bitmap Index Scan line . Then, using the bitmap, the table rows or blocks are scanned, which is marked
by the Bitmap Heap Scan line in the plan:
Bitmap Heap Scan on tab (cost=10..1000.51 rows=998 width=11)
Recheck Cond: (col1 < '1000'::numeric)
-> Bitmap Index Scan on t_col1_idx (cost=0.00..9.60 rows=998 width=0)
Index Cond: (col1 < '1000'::numeric)
Example of accessing a column-stored table:
Custom Scan (ColumnarScan) on public.perf_columnar (cost=0.00..138.24 rows=1
width=8)
Possible plan node (row) types are listed in the src/include/nodes/plannodes.h file of the

PostgreSQL source code.
Only one server process has access to temporary tables, so there is no parallelism when scanning a

temporary table.

147Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Methods of accessing data in a query plan

• ways in which a process obtains data (rows, records) from data
sources

• sources can be tables, external tables, functions, etc.
• Extensions can create their own access methods
• for the Bitmap method, a bitmap is built by index

› the construction of the map is marked by the line Bitmap Index Scan
› The bitmap is scanned for rows or blocks of the table, which is

indicated by the Bitmap Heap Scan line in the plan:

Bitmap Heap Scan on tab (cost=10..1000.51 rows=998 width=11)
Recheck Cond: (col1 < '1000'::numeric)
-> Bitmap Index Scan on t_col1_idx (cost=0.00..9.60 rows=998 width=0)
Index Cond: (col1 < '1000'::numeric)

String Access Methods

There are two types of "methods" for accessing table rows: table and index.
List of available access methods: \dA or query:
SELECT * FROM pg_am;
oid | amname | amhandler | amtype
---------+----------+----------------------------+---------
2 | heap | heap_tableam_handler | t
403 | btree | bthandler | i
405 | hash | hashhandler | i
783 | gist | gisthandler | i
2742 | gin | ginhandler | i
4000 | spgist | spghandler | i
3580 | brin | brinhandler | i

Access methods can be added by extensions:
create extension pg_columnar;
create extension bloom;
Extensions will add access methods to the pg_am table :
2425358 | columnar | columnar.columnar_handler | t
2425512 | bloom | blhandler | i

Table access methods define how data is stored in tables. To force the planner to use an index access
method, you must create a helper object called an index. "Index type" and "index access method" are
synonyms .
Indexes are created on one or more columns of a table:
create table t(id int8, s text);
create index t_idx on t using btree (id int8_ops) include (s) with (fillfactor =
90, deduplicate_items = off);
When creating an index, you specify the table name and the column or columns (the "composite

index") whose values will be indexed. The INCLUDE option allows you to store column values in the
index structure; expressions cannot be used. Operator classes are not required for the data types of
such columns. The purpose of including columns is to force the planner to use Index Only Scan.
You can create multiple identical indexes, but with different names.
The operator class name is usually not specified because there is a default class for the column type.

The default is the btree index type.
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createindex.html

148Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• two types of "methods" (ways) of accessing
table rows: table and index

• Access methods can be added by extensions:
› create extension pg_columnar;
› create extension bloom;

• Table access methods define how data is stored in tables and
typically read all rows.

• Index methods typically read a portion of the table blocks.
• For index methods (methods) you need to create an auxiliary object

called an index
• Indexes are created on one or more columns of a table :

String Access Methods
\dA
List of access methods

Name | Type
----------+-------
bloom | Index
brin | Index
btree | Index
columnar | Table
gin | Index
gist | Index
hash | Index
heap | Table
spgist | Index

(9 rows)

create table t (id int8, d date, s text);
create index t_idx on t using btree (id int8_ops, d date_ops);
create index t_idx1 on t using btree (s text_ops);
create index if not exists t _idx2 on t (id , d);

Methods for joining sets of rows

Rowsets are always joined in pairs, that is, two sets (selections) are joined. In PostgreSQL, there are
three ways to join rowsets (selections) in a query execution plan:
Nested Loop Join : one set of rows is sequentially scanned for each row in the second set. This

method is optimal for joining sets with a small number of rows. Its computational complexity is equal to
the product of the number of rows in the samples. Underestimation of the number of rows during
estimation (cardinality estimation errors) leads to a significant increase in the execution time for this join
method. The order of the tables does not matter when joining this method. The first row is returned
without delay. Can be used with a join condition other than equality.
There is a variation of this method with memoization - caching a set that is scanned many times. When

using memoization, this set must be smaller. The Memoize node is embedded in the plan between the
node supplying the data and the Nested Loop.
Hash Join - possible only for joining by equality condition. First, the sample with the smallest size is

selected, which is determined by the number of rows and the size of the sample row, which consists of
the columns mentioned in the query (the table may have more columns). Based on this set, a hash
structure (called a hash table) is built in the process memory in one pass, which exists until the query is
completed. Then the second sample is viewed and rows are selected from the hash structure if there is
a match. The computational complexity is proportional to the sum of the rows in both samples. The first
row is returned only after the hash table is built, that is, after reading the first set of rows. If there is not
enough memory for the hash table, then temporary files are used and the time to perform the
connection increases due to the addition of file operations.
Merge Join : This method requires that both samples be sorted by the columns being joined. In query

plans, the sorted rows are a side effect of the lower nodes of the execution plan. For example, when
scanning a btree index, the rows arrive at the upper node sorted (by the index key columns). The
computational complexity is proportional to the sum of the rows from the two samples. The first row is
returned without delay, since a hash table is not built.
All connection methods can be performed in parallel processes.

149Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Methods for joining sets of rows

• Methods:
› Nested Loop Join with and without Memoization
› Hash Join with and without temporary files
› Merge Join

• Sets of rows are always joined in pairs

Cardinality and selectivity

Relational theory has only a tangential relationship to practice and a lot of fancy terms that make it
difficult to understand. The number of attributes (columns) is called the arity or degree of a relation.
Data types are called domains or sets of admissible values. A join of tables is defined as a Cartesian
product to which a selection (restriction) operation is applied with a predicate (join condition). The
Cartesian product itself has no practical meaning, but it is similar to multiplication, which is why it was
defined. There is even division, but it is quite fancy. However, when relational theory appeared,
network databases were popular, which are even more confusing. Now relational theory and Codd
algebra are of historical interest. Some less fancy terms are still used, such as cardinality and
selectivity. Eventually, the SQL language appeared, which is loosely based on relational algebra, and
tables in SQL are not exactly relations. For example, you can create a table with identical rows.
In the relational data model, the cardinal number of a relation (abbreviated cardinality) or the power of

a relation is the number of rows (aka tuples). In practice, this is the rows indicator in the execution plan
nodes. Up to version 18 of PostgreSQL, this is an integer. Starting with version 18 of PostgreSQL, the
rows value will be given in decimal form. The authors of the patch are Ibrar Ahmed, Ilya Evdokimov
(Tantor Labs), and Robert Haas). Example:
Gather (actual rows=2.00 loops=1)
-> Parallel Seq Scan on bookings (actual rows=0.67 loops=3)
The reason for introducing decimal values is: 0.67*3=2.00 , while in previous versions 1*3=2

looked like a discrepancy.
Gather (actual rows=2 loops=1)
-> Parallel Seq Scan on bookings (actual rows=1 loops=3)
is the proportion (from zero to 1) of rows from a sample. For example, if 10% of rows pass through the

WHERE condition (called a predicate - a term from relational theory) that filters rows, then the
"predicate selectivity" is 0.1. If there is no filtering, then the selectivity of the sample is 1. If zero rows
are returned, then the selectivity is zero.
The most common errors of the planner are incorrect assessment of selectivity, which is indicated in

the plan by a discrepancy between planned rows and actual rows of more than an order of magnitude.
https://www.postgresql.org/docs/18/release-18.html#RELEASE-18-CHANGES

150Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the cardinal number of a relation (abbreviated cardinality) or
the power of a relation is the number of rows (they are also
tuples)
› in terms of rows and actual rows
› Since PostgreSQL version 18, rows are decimal numbers.

• Selectivity is the proportion (from zero to 1) of rows from the
sample

Cardinality and selectivity

Gather (actual rows=2.00 loops=1)
-> Parallel Seq Scan on bookings (actual rows=0.67 loops=3)

Cost of query plan

Cost is a numerical estimate of the complexity of executing a plan node or the entire query. It consists
of two numbers with two dots between them. The first number (startup cost) is the cost of returning the
first row in the selection. The second number (total cost) is the cost of returning all rows. For all queries
except cursors, the plan with the smallest second number is selected.
The first number is taken into account when choosing the optimal plan only for cursors, for them the

plan with the smallest value is selected: the first number + cursor_tuple_fraction * (the
second number - the first number) . By default, the value of the configuration parameter is:
show cursor_tuple_fraction;
cursor_tuple_fraction

0.1
The cost value is meaningful only for comparing plans for the same query. Values for different queries

are poorly comparable. The cost of the same query correlates with the execution time of this query, but
nonlinearly. When CPU cores or I/O are loaded, the cost does not change, but the execution time of the
query increases.
cost calculation :
postgres=# EXPLAIN (analyze, buffers) SELECT * FROM t;
QUERY PLAN
--
Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=8) (actual time=0.016..3924.918

rows=1000000 loops=1)
Buffers: shared hit=4425

Planning Time: 0.033 ms
Execution Time: 7797.977 ms
postgres=# select relpages, reltuples::numeric, current_setting('seq_page_cost') seq_page_cost,

current_setting('cpu_tuple_cost') cpu_tuple_cost, current_setting('seq_page_cost')::float * relpages
CPU, current_setting('cpu_tuple_cost')::float * reltuples IO,
current_setting('seq_page_cost')::float * relpages + current_setting('cpu_tuple_cost')::float *
reltuples total_cost from pg_class c where relname = 't';
relpages | reltuples | seq_page_cost | cpu_tuple_cost | cpu | io | total_cost
----------+-----------+---------------+----------------+------+-------+--------+-----------
4425 | 1000000 | 1 | 0.01 | 4425 | 10000 | 14425
In the example, the contribution to the input-output cost is 10000/144.25=70%.

151Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Cost of query plan
• Cost - a numerical estimate of the complexity of executing a plan node

or the entire query
• Consists of two numbers with two dots between them

› cost= 0.00..14425.00
• The first number (startup cost) is the cost of returning the first row in

the sample
• The second number (total cost) is the cost of returning all lines
• The cost value is only meaningful for comparing plans for the same

query.
• For all queries except cursors, the plan with the smallest second

number is selected
• The cost of the same query correlates with the execution time of that

query, but nonlinearly

Statistics

The scheduler uses statistics. Statistics are collected and stored in system catalog tables for tables
and indexes. Basic statistics include information about data distribution, number of unique values, size
of tables and indexes, and other metrics. Extended statistics are also collected automatically, but you
must define the parameters with the CREATE STATISTICS... command.
Statistics are not updated, they are re-compiled by autovacuum (autoanalysis phase) or the ANALYZE

command.
Statistics are stored in the system catalog tables:
pg_class and pg_index: Contain information about the sizes of tables and indexes, as well as the

number of rows in the tables.
pg_statistic: Contains statistics about column values such as minimum and maximum values, mean,

standard deviation, etc.
Extended statistics are stored in pg_statistic_ext and pg_statistic_ext_data.
Cumulative statistics are available in the pg_stat_all_*, pg_statio_* views that output data from instance

memory using pg_stat_get* functions. When an instance is stopped, cumulative statistics are saved in
the $PGDATA/pg_stat directory .

152Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Statistics
• used by the planner when choosing a plan
• Basic and advanced statistics are stored in system catalog tables
• collection of extended statistics is set manually by the CREATE

STATISTICS command or automatically by the pg_stat_advisor
extension
› after installation, extended statistics are collected together with the

basic autovacuum (autoanalysis) or when executing VACUUM
(ANALYZE) commands

• cumulative statistics are stored in shared memory, accessible through
pg_stat_all_* views and pg_stat_get* functions
› when the instance is stopped, it is saved to a file in the

PGDATA/pg_stat/directory
› used by autovacuum

pg_statistic table

The pg_statistic table stores basic statistics. It is collected by autoanalysis and the ANALYZE
command, and is used to optimize queries by the planner. The statistics are approximate values, even if
they are relevant. By default, default_statistics_target * 300 = 30000 rows are collected.
The pg_statistic table contains data for each column of the tables.
For example, the proportion of rows with NULL in the third column of the test table:
select stanulfrac from pg_statistic where starelid = 'test'::regclass and
staattnum = 3;
stanullfrac

0.9988884
The statistics about the proportion of empty values are used by the scheduler.
More details in the documentation
https://docs.tantorlabs.ru/tdb/en/17_5/se/catalog-pg-statistic.html

153Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

pg_statistic table

• The pg_statistic table stores basic statistics.
• Collected by autoanalysis and the ANALYZE command, used

for query optimization by the planner
• By default, it is rebuilt by default_statistics_target * 300 =

30000 rows
• contains data for each column of the tables
• Example: the proportion of rows with NULL in the third

column of the test table :
select stanulfrac from pg_statistic
where starelid = ' test '::regclass and staattnum = 3 ;
stanullfrac

0.9988884

Cumulative statistics

In pg_stat_all_tables - statistics on reading table blocks, all indexes on this table, TOAST table and its
index (TOAST is always accessed through the TOAST index and therefore the data on the TOAST index
is proportional to the data on the TOAST table) with loading from disk (columns *_blks_read) and
from the buffer cache (columns *_blks_hit).
pg_statio_all_tables view contains statistics for all indexes on a table. Statistics (reading with

loading from disk and from the buffer cache) for a specific index can be viewed in the
pg_statio_all_indexes view .
Statistics by tables:
select schemaname||'.'||relname name, seq_scan, idx_scan, idx_tup_fetch, autovacuum_count, autoanalyze_count

from pg_stat_all_tables where idx_scan is not null order by 3 desc limit 3;
name | seq_scan | idx_scan | idx_tup_fetch | autovacuum_count | autoanalyze_count
-------------------------+----------+----------+---------------+------------------+-------------------
public.pgbench_accounts | 0 | 11183162 | 11183162 | 1512 | 266
public.pgbench_tellers | 906731 | 4684850 | 4684850 | 1524 | 1536
public.pgbench_branches | 907256 | 4684327 | 4684327 | 1527 | 1536
select relname name, n_tup_ins ins, n_tup_upd upd, n_tup_del del, n_tup_hot_upd hot_upd, n_tup_newpage_upd

newblock, n_live_tup live, n_dead_tup dead, n_ins_since_vacuum sv, n_mod_since_analyze sa from pg_stat_all_tables
where idx_scan is not null order by 3 desc limit 3;

name | ins | upd | del | hot_upd | newblock | live | dead | sv | sa
------------------+-----+---------+-----+---------+----------+--------+---------+----+------
pgbench_tellers | 0 | 5598056 | 0 | 5497197 | 100859 | 10 | 1456051 | 0 | 165
pgbench_branches | 0 | 5598056 | 0 | 5589787 | 8269 | 1 | 1456044 | 0 | 175
pgbench_accounts | 0 | 5598056 | 0 | 3923068 | 1674988 | 100001 | 1456032 | 0 | 7619

Statistics n_tup_hot_upd is not updated by vacuum.
The pg_stat_xact_all_tables view has the same columns as pg_stat_all_tables, but shows only actions

performed in the current transaction so far and not yet in pg_stat_all_*. The columns for n_live_tup,
n_dead_tup , and those related to vacuuming and analysis are missing from these views:
select schemaname||'.'||relname name, seq_scan, idx_scan, idx_tup_fetch, n_tup_ins ins, n_tup_upd upd, n_tup_del

del, n_tup_hot_upd hot_upd, n_tup_newpage_upd newblock from pg_stat_xact_all_tables where idx_scan is not null
order by 3 desc limit 3;

name | seq_scan | idx_scan | idx_tup_fetch | ins | upd | del | hot_upd | newblock
-------------------------+----------+----------+--------------+-----+-----+-----+-----+---------+----------
pg_catalog.pg_namespace | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0

154Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• according to tables:

• pg_statio_all_tables view contains statistics for all indexes on a table.
Statistics (reading with loading from disk and from the buffer cache) for a
specific index can be viewed in the pg_statio_all_indexes view .

Накопительная статистика

select schemaname||'.'||relname name, seq_scan, idx_scan, idx_tup_fetch, autovacuum_count, autoanalyze_count from
pg_stat_all_tables where idx_scan is not null order by 3 desc limit 1;

name | seq_scan | idx_scan | idx_tup_fetch | autovacuum_count | autoanalyze_count
-------------------------+----------+----------+---------------+------------------+-------------------
public.pgbench_accounts | 0 | 11183162 | 11183162 | 1512 | 266
select relname name, n_tup_ins ins, n_tup_upd upd, n_tup_del del, n_tup_hot_upd hot_upd, n_tup_newpage_upd

newblock, n_live_tup live, n_dead_tup dead, n_ins_since_vacuum sv, n_mod_since_analyze sa from pg_stat_all_tables
where idx_scan is not null order by 3 desc limit 1;

name | ins | upd | del | hot_upd | newblock | live | dead | sv | sa
------------------+-----+---------+-----+---------+----------+--------+---------+----+------
pgbench_tellers | 0 | 5598056 | 0 | 5497197 | 100859 | 10 | 1456051 | 0 | 165

pg_stat_statements extension

Standard extension. Provides detailed statistics of the instance operation with the accuracy of SQL
commands. To install, you need to download the library and install the extension:
alter system set shared_preload_libraries = pg_stat_statements;
create extension pg_stat_statements;
The extension includes 3 functions and 2 views:
\dx+ pg_stat_statements
function pg_stat_statements(boolean)
function pg_stat_statements_info()
function pg_stat_statements_reset(oid,oid,bigint,boolean)
view pg_stat_statements
view pg_stat_statements_info

The extension collects command execution statistics, grouped by commands.
compute_query_id configuration parameter is used to group commands . The parameter value must

be auto (the default value) or on.
Commands are combined into a single command in pg_stat_statements when they are executed

by the same user and have identical structure, i.e. are semantically equivalent except for literals and
substitution variables (literal constants). For example, the queries: select * from t where id =
'a' and select * from t where id = 'b' are combined into the query: select * from t
where id = $1 . Queries with visually different texts can be combined if they are semantically
equivalent. Different commands can be combined due to a hash collision, but the probability of this is
low. And vice versa: commands with the same text can be considered different if they received a
different parse tree, for example, due to a different search_path .
Statistics are reset by calling the pg_stat_statements_reset() function .
Tantor Postgres SE 17.5 adds the pg_stat_statements.sample_rate configuration parameter

, which addresses the performance degradation issue when using the extension on heavily loaded
clusters.
Tantor Postgres SE 17.5 also added the pg_stat_statements.mask_const_arrays,
pg_stat_statements.mask_temp_tables configuration parameters , which mask array names
and temporary table names, allowing for more accurate grouping of statistics by similar queries.

155Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• detailed statistics of the instance operation down to SQL commands
• To install, you need to download the library and install the extension:

• The extension includes 3 functions and 2 views:

• commands are combined into a single line in pg_stat_statements when
they are executed by the same user and have identical query structures, i.e.
are semantically equivalent except for literals and substitution variables (
literal constants)

• For example: select * from t where id = 'a' and select * from t
where id = 'b' will combine into select * from t where id = $1

pg_stat_statements extension

alter system set shared_preload_libraries = pg_stat_statements;
create extension pg_stat_statements;

\dx+ pg_stat_statements
function pg_stat_statements(boolean)
function pg_stat_statements_info()
function pg_stat_statements_reset(oid,oid,bigint,boolean)
view pg_stat_statements
view pg_stat_statements_info

pg_stat_statements configuration parameters
select name, setting, context, min_val, max_val from pg_settings where name like 'pg_stat_statements%';
name | setting | context | min_val | max_val
-----------------------------------+---------+------------+----------+-----------
pg_stat_statements.max | 5000 | postmaster | 100 | 1073741823
pg_stat_statements.save | on | sighup | |
pg_stat_statements.track | top | superuser | |
pg_stat_statements.track_planning | on | superuser | |
pg_stat_statements.track_utility | on | superuser | |

Extension configuration parameters:
pg_stat_statements.max specifies the maximum number of statements tracked by the extension,

that is, the maximum number of rows in the pg_stat_statements view . Statistics about rarely
executed statements are usually not needed, and there is no need to increase this value, as this
increases the amount of shared memory allocated by the extension. The default value is 5000.
pg_stat_statements.save determines whether statistics should be saved across server reboots. If

the value is off , statistics are not saved when the instance is stopped. The default value is on , which
means statistics are saved when the instance is stopped or restarted.
pg_stat_statements.track determines which statements will be tracked. Accepts values:
1) top (default value) only top-level commands (passed by clients in sessions) are tracked
2) all - in addition to top-level commands, commands inside called functions are tracked
3) none - statistics collection is disabled.
pg_stat_statements.track_planning sets whether planning operations and the duration of the

planning phase are tracked. Setting this to on can result in noticeable performance degradation,
especially when multiple sessions are running commands with the same query structure at the same
time, causing those sessions to attempt to modify the same rows in pg_stat_statements at the
same time . The default is off .
pg_stat_statements.track_utility determines whether the extension will track utility

commands. Utility commands are commands other than SELECT, INSERT, UPDATE, DELETE, MERGE
. The default value is on .

156Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_stat_statements.max specifies the maximum number of statements tracked by the
extension, that is, the maximum number of rows in the pg_stat_statements view.

• pg_stat_statements.save determines whether statistics should be saved across server
reboots

• pg_stat_statements.track determines which commands will be tracked: top only top-
level commands are tracked

• pg_stat_statements.track_planning sets whether planning operations and the duration of the
planning phase are tracked

• pg_stat_statements.track_utility whether statements other than SELECT, INSERT,
UPDATE, DELETE, MERGE will be tracked

pg_stat_statements parameters

select name, setting, context, min_val, max_val from pg_settings where name like
'pg_stat_statements%';

name | setting | context | min_val | max_val
-----------------------------------+---------+------------+---------+------------
pg_stat_statements.max | 5000 | postmaster | 100 | 1073741823
pg_stat_statements.save | on | sighup | |
pg_stat_statements.track | top | superuser | |
pg_stat_statements.track_planning | on | superuser | |
pg_stat_statements.track_utility | on | superuser | |

Practice

Creating objects for queries
Extract data sequentially
Returning data by index
Low selectivity
Using statistics
pg_stat_statements view

157Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Creating objects for queries
2. Extract data sequentially
3. Returning data by index
4. Low selectivity
5. Using statistics
6. pg_stat_statements view

Practice

158Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Extensions

2e PostgreSQL Architecture

PostgreSQL Extensibility

Extensibility of PostgreSQL is the ability to be easily adapted to the needs of applications,
administrators, and users. Historically, PostgreSQL was developed with an emphasis on extensibility. In
early versions of PostgreSQL, when it was still called Postgres, the creator of the system, Michael
Stonebraker, focused on extensibility - adding functionality without having to change the source code
files written in C. Non-extensible and closed products usually disappear, leaving only products whose
functionality can be easily extended by third-party companies.
You can create data types, operators, group functions, type casts.
Install programming languages for writing stored routines.
Extensions are a set of any database objects that can be installed or removed as a single unit.
It is possible to extend the functionality with shared libraries (.so files)
With the help of extensions (the CREATE EXTENSION command) you can install (Foreign Data

Wrapper , FDW, external data wrapper). FDW provides the ability to work with data located in external
systems (databases, services, files, etc.) using external tables (foreign table) according to logic. FDW is
described in the SQL standard as a way to work with external data.

159Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• adding functionality without making changes to source code
files and recompiling

• you can create data types, operators, group functions, type
casts

• creating stored routines in a wide range of programming
languages

• creating and using extensions
› a collection of any database objects that can be installed or

removed as a single unit
• extending functionality with shared libraries
• External Data Wrappers (FDW)

PostgreSQL Extensibility

Extension and library file directories

Library files are located in the directory:
/opt/tantor/db/17/lib/postgresql
Extension files (*.control and *.sql) are located in the directory:
/opt/tantor/db/17/share/postgresql/extension
You can find out the location using the commands:
postgres@tantor:~$ pg_config --libdir
/opt/tantor/db/17/lib
postgres@tantor:~$ pg_config --sharedir
/opt/tantor/db/17/share/postgresql
or by request:
postgres=# SELECT * FROM pg_config where name in ('LIBDIR','SHAREDIR');
name | setting
----------+------------------------------------
LIBDIR | /opt/tantor/db/17/lib
SHAREDIR | /opt/tantor/db/17/share/postgresql
However, you need to add the postgresql and extension subdirectories to these configuration

parameters. This is inconvenient to remember. Extensions can be installed by copying files to these
directories or by the later "PGXS" method, which appeared in PostgreSQL relatively recently, but is just
as inconvenient. For this method, you need to add the directory with the pg_config utility to the
PATH and an environment variable that tells the make utility to use the PGXS extension installation
logic:
root@tantor:~# export PATH=/opt/tantor/db/17/bin:$PATH
root@tantor:~# export USE_PGXS=1
then go to the extension directory and run the make and make install commands .
The method is quite complicated. Therefore, the practice of installing extensions, libraries, utilities,

applications using deb and rpm packages is widespread.

160Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Extension and library file directories

• Library files are located in the directory:
• /opt/tantor/db/17/lib/postgresql
• Extension files (*.control and *.sql) are located in the directory:
• /opt/tantor/db/17/share/postgresql/extension
• You can find out the location using the commands:

• Installation using the "PGXS" method:

• usually extensions, libraries, utilities, applications are installed by
deb and rpm packages

postgres@tantor:/opt/tantor/db/17/lib$ pg_config --libdir
/opt/tantor/db/17/lib
postgres@tantor:/opt/tantor/db/17/lib$ pg_config --sharedir
/opt/tantor/db/17/share/postgresql

root@tantor:~# export PATH=/opt/tantor/db/17/bin:$PATH
root@tantor:~# export USE_PGXS=1
root@tantor:~# cd extension_directory
root@tantor:~# make
root@tantor:~# make install

Installing extensions

Extensions may include a shared library and/or text files: an extension control file and one or more
script files. If an extension consists of only a library, the library may be loaded in several ways, which
must be specified in the library description. The library must be specified in one of the parameters:
postgres=# \dconfig *librar*
archive_library |
dynamic_library_path | $libdir
local_preload_libraries |
session_preload_libraries |
shared_preload_libraries | pg_stat_statements

or the LOAD command:
postgres=# load 'library';
LOAD
If the extension has objects inside the database, such as functions, procedures, views, tables, etc.,

then the commands for creating them are specified in the .sql script file , and the extension
characteristics in the .control file . You can see the list of such extensions in the views:
postgres=# \dv *exten*

List of relations
Schema | Name | Type | Owner

------------+---------------------------------+------+----------
pg_catalog | pg_available_extension_versions | view | postgres
pg_catalog | pg_available_extensions | view | postgres

The list of installed extensions can be viewed using the \dx command.
The extension is installed with the command: CREATE EXTENTION name , and removed with DROP
EXTENTION . You can replace the extension with another version or change the extension properties
with the command ALTER EXTENSION .
If the extension should not be used, a dash is inserted into its name and to install it, the name must be

enclosed in double quotes:
postgres=# create extension "uuid-ossp";
CREATE EXTENSION
Particularly unsuccessful extensions also have dashes inserted into the parameter names.

161Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Extensions may include a shared library and/or text files: an extension
control file and one or more script files.

• libraries are loaded using parameters or the command:

• Extension objects are installed by the command:

• Extensions available for installation are listed in the
pg_available_extentions view.

Installing extensions

postgres=# \dconfig *librar*
archive_library |
dynamic_library_path | $libdir
local_preload_libraries |
session_preload_libraries |
shared_preload_libraries | pg_stat_statements
postgres=# load 'name';
LOAD
postgres=# \dx

postgres=# create extension name;
CREATE EXTENSION

Extension files

Extension files can be viewed to learn how extension objects are created.
The control file has the format name.control
There must also be at least one SQL script file that follows the naming pattern name--version.sql
which is located in the same place as the control file - in the SHAREDIR/extension directory, unless the

directory parameter is specified in the control file. If an absolute path is not specified, then the path is
relative to the SHAREDIR directory, which is equivalent to specifying directory = 'extension'.
Parameters in the control file:
encoding - encoding for script files. Default is the database encoding.
requires - names of extensions separated by commas and spaces, on which this extension depends,

without them it will not be installed.
relocatable - whether extension objects can be moved to another schema. By default, it cannot be

moved, the value is false.
schema - only for non-movable extensions. Schema in which extension objects are created with the

CREATE EXTENSION command. Ignored when updating an extension - objects are not moved.
For individual versions of the extension, control files with names like name--version.control may exist

in the same place as the control file. The parameters specified in them override the parameters of the
main control file.
The format of the script file name is: name--version.sql For version switching scripts: name-version--

version.sql The contents of these files are executed in a transaction, so they cannot contain begin,
commit, or commands that cannot be executed within a transaction.
https://docs.tantorlabs.ru/tdb/en/17_5/se/extend-extensions.html#EXTEND-EXTENSIONS-FILES

162Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• example control file
pg_stat_kcache--2.3.0.control

• example script file pg_stat_kcache--2.3.0.sql

Extension files

pg_stat_kcache extension
comment = 'Kernel statistics gathering'
default_version = '2.3.0'
requires = 'pg_stat_statements'
module_pathname = '$libdir/pg_stat_kcache'
relocatable = true

-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION pg_stat_kcache" to load this file. \quit
SET client_encoding = 'UTF8';
CREATE FUNCTION pg_stat_kcache_reset()
RETURNS void
LANGUAGE from COST 1000
AS '$libdir/pg_stat_kcache', 'pg_stat_kcache_reset';
REVOKE ALL ON FUNCTION pg_stat_kcache_reset() FROM public;
...

Foreign Data Wrapper

Foreign Data Wrapper (FDW) is a functionality for accessing data outside the database from a session
with a PostgreSQL database in a standardized and relatively simple way. Similar to the functionality of
transparent gateways and dblink in Oracle Database. PostgreSQL includes two wrappers (drivers):
postgres_fdw for working with tables in PostgreSQL databases and file_fdw for the contents of text
files.
FDW is installed as an extension, and may include a library. The extension implements the logic of the

driver (adapter) for accessing an external software system via its protocol. Then the following objects
are created:
FOREIGN SERVER - details of connection to the external system are specified:. For example,

passwords, database names, network address, port . Example:
CREATE SERVER conn1 FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'localhost',
port '5432', dbname 'postgres');
USER MAPPING - if the external system has accounts (users, groups, roles), then you can map the

cluster roles to the external system accounts
FOREIGN TABLE - always created or imported. For an external data source, a local object is created in

the PostgreSQL database that looks like a table or view. When using FDW, work with external data is
done as with tables. These tables can be used in queries, connections with regular, temporary and
other tables. The insert, update, delete commands can be implemented, but this depends on the
external data source. For example, for file_fdw , deletion, modification, insertion of lines into text
files is not implemented.
Lists of FDW objects can be viewed using psql commands: \dew, \des, \deu, \det
There are extensions: mysql_fdw, oracle_fdw, sqlite_fdw, mongo_fdw, redis_fdw and others.
By default, connections established by postgres_fdw to third-party services remain open for reuse in

the same session that accessed the external table.
The standard "dblink" extension can be used to access PostgreSQL databases. The functions of this

extension can send any commands and receive the result. Its way of working is not similar to Oracle
Database dblink. The extension appeared before the FDW specification.

163Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• External Data Wrapper) - functionality for accessing data
located outside the database from a session with the
PostgreSQL database in a standardized and relatively simple
way

• PostgreSQL includes two wrappers (drivers): postgres_fdw
for working with tables in PostgreSQL databases and file_fdw
for the contents of text files.

• FDW is installed as an extension
• There are extensions: mysql_fdw,

oracle_fdw, sqlite_fdw, mongo_fdw, redis_fdw
• psql commands to view FDW objects:
\dew, \des, \deu, \det

Foreign Data Wrapper

csv, txt, etc.service

file_fdw extension

file_fdw allows you to create virtual tables based on data stored in files of various formats, such as
CSV. It is used to read lines of text files and present them as regular tables. Example:
CREATE EXTENSION file_fdw;
CREATE SERVER csv_server FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE t1 (
column1 text,
column2 numeric,
...
)
SERVER csv_server OPTIONS(filename '/path/to/file.csv', format 'csv');

https://docs.tantorlabs.ru/tdb/en/17_5/se/file-fdw.html

164Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• file_fdw allows you to create virtual tables based on data stored in
text files

• You can't make changes to the files, you can only read them
• there are no indexes, the entire file is scanned for each SELECT
• Example of creating FDW objects:

file_fdw extension

CREATE EXTENSION file_fdw;
CREATE SERVER csv_server FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE t1 (
column1 text,
column2 numeric,
...
)
SERVER csv_server OPTIONS(filename '/path/to/file.csv', format 'csv');

file_fdw extension

dblink allows you to send any commands for execution and receive the result. Example:
SELECT * FROM dblink('dbname=postgres user=postgres', $$ select 7; $$) as (col1
int);
7
SELECT * FROM dblink_connect('connection1', 'host=/var/run/postgresql
port=5432');
OK
SELECT * FROM dblink_send_query('connection1', $$ select 8 from pg_sleep(1); $$
);
1
SELECT dblink_is_busy('connection1');
1
SELECT * FROM dblink_get_result('connection1') as t(col1 int);
8
SELECT dblink_is_busy('connection1');
0
SELECT * FROM dblink_exec('connection1', $$ CHECKPOINT; $$);
CHECKPOINT
SELECT * FROM dblink_disconnect('connection1');
OK
https://docs.tantorlabs.ru/tdb/en/17_5/se/dblink.html

165Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• allows you to send commands for execution and receive results

dblink extension

SELECT * FROM dblink('dbname=postgres user=postgres', $$ select 7; $$) as (col1 int);
7
SELECT * FROM dblink_connect('connection1','host=/var/run/postgresql port=5432');
OK
SELECT * FROM dblink_send_query('connection1', $$ select 8 from pg_sleep(1); $$);
1
SELECT dblink_is_busy('connection1');
1
SELECT * FROM dblink_get_result('connection1') as t(col1 int);
8
SELECT dblink_is_busy('connection1');
0
SELECT * FROM dblink_exec('connection1', $$ CHECKPOINT; $$);
CHECKPOINT
SELECT * FROM dblink_disconnect('connection1');
OK

Practice

Defining the directory with extension files
View installed extensions
View available extensions
Installing and removing custom updates
View available extension versions
Update to the latest version
External data wrappers

166Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Defining the directory with extension files
2. View installed extensions
3. View available extensions
4. Installing and removing custom updates
5. View available extension versions
6. Update to the latest version
7. External data wrappers

Practice

167Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Configuring PostgreSQL

3

Review

There are approximately 370 configuration parameters that affect the operation of the instance.
Tuning an instance mostly involves setting configuration parameter values at various levels so that the

instance operates optimally under the current load.
Parameters have a name (case insensitive) and a value.
Parameter values can be:

logical (the " bool " value in the vartype column of the pg_settings view)
string (" string ")
integers (" integer ", " int64 ")
decimal numbers (" real ")
numbers (" integer " , " int64 " , " real ") with a unit of measurement in bytes or time
values from the list (" enum ").

The parameter type names are not related to SQL data types. The maximum and minimum values of
numeric types for each parameter are specified in the min_val and max_val columns of the
pg_settings view .

It is better to enclose the values of string parameters in apostrophes. If the value itself contains an
apostrophe, then duplicate the apostrophe (two apostrophes).

For numeric parameters with units of measurement, the following are acceptable unit designations
(case sensitive): B (bytes), kB (kilobytes), MB (megabytes), GB (gigabytes), and TB (terabytes); us
(microseconds), ms (milliseconds), s (seconds), min (minutes), h (hours), and d (days). It is better to
enclose the values themselves in apostrophes.

For " enum ", the list of valid values can be found in the enumvals column of the pg_settings
view .

Extensions and applications can define and use their own configuration parameters, such parameters
have a period in their name.

https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-custom.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config.html

168Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• there are about 370 parameters
• affect the operation of the instance
• title is case insensitive
• extensions and applications can use their own

configuration parameters, such parameters have a
dot in the name

• instance tuning - setting the values of configuration
parameters so that the instance operates optimally
under the current load

Review

Configuration parameters

When creating a cluster, two files are created:
1) the main file with cluster configuration parameters postgresql.conf

If the cluster is running, the location can be seen in the value of the config_file parameter
. You can set the value of the config_file parameter only on the command line when starting the
cluster .
You can see the parameters of the main process: postgres --help
postgres is the PostgreSQL server.
Usage:
postgres [OPTION]...
Options:
-B NBUFFERS number of shared buffers
-c NAME = VALUE set run-time parameter
-C NAME print value of run-time parameter, then exit
-d 1-5 debugging level
-D DATADIR database directory
-c switch can be used to pass any configuration parameters. Example:
pg_ctl start -o "-c config_file = /opt/postgresql.conf "
2) file postgresql.auto.conf It is always located in the PGDATA directory . If the cluster is

running, the location of PGDATA can be found in the value of the data_directory parameter
postgresql.conf file outside the PGDATA directory when backing up and restoring. The
pg_basebackup backup utility copies only the contents of PGDATA (and tablespaces) , so
parameters specific to the backup node can be placed in postgresql.conf outside PGDATA and this
file will not be overwritten during restoration. The pg_rewind utility also synchronizes only the
PGDATA directory and tablespaces.

169Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The main configuration file postgresql.conf is
viewed first
. Parameters may be duplicated; the latest one is
applied.

• Next, the parameters
$PGDATA/postgresql.auto.conf are applied

• Command line parameters passed to the postgres -c
process take precedence over those set in
the pg_ctl start -o "-c
config_file=/opt/postgresql.conf" parameter files.

Configuration parameters

View parameters

The current values of cluster parameters can be conveniently viewed using the psql \dconfig
parameter_mask command
For example:
postgres=# \dconfig *data_d*
List of configuration parameters
Parameter | Value
---------------------+---------------------------------------
data_directory | /var/lib/postgresql/tantor-se-17/data
data_directory_mode | 0750
will show the values of the parameters where the string data_d occurs
The SHOW command will show the current values of the parameter. The tab key in psql will show the

allowed values. SHOW shows one parameter. The inconvenience of the SHOW command is that it must
be terminated with " ; " otherwise it will remain in the psql buffer .
postgres=# show data_directory;
data_directory

/var/lib/postgresql/tantor-se-17/data
(1 row)
You can clear the psql buffer with the command \r
postgres=# \r
Query buffer reset (cleared).
current_setting(parameter name) function is an analogue of the SHOW command

170Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• psql command \dconfig
- you can search by pattern \dconfig *name*
- you can use tab key

• Command SHOW parameter_name;
- you can use the tab key
- you need to send it for execution by typing “ ; ”
- only one parameter

• function current_setting('parameter name')

View parameters

View parameters

The current values of cluster parameters can be conveniently viewed using the psql \dconfig
parameter_mask command
For example:
postgres=# \dconfig *data_d*
List of configuration parameters
Parameter | Value
---------------------+---------------------------------------
data_directory | /var/lib/postgresql/tantor-se-17/data
data_directory_mode | 0750
will show the values of the parameters where the string data_d occurs
The SHOW command will show the current values of the parameter. The tab key in psql will show the

allowed values. SHOW shows one parameter. The inconvenience of the SHOW command is that it must
be terminated with " ; " otherwise it will remain in the psql buffer .
postgres=# show data_directory;
data_directory

/var/lib/postgresql/tantor-se-17/data
(1 row)
You can clear the psql buffer with the command \r
postgres=# \r
Query buffer reset (cleared).
Function current_setting(parameter name) - analogous to the SHOW command .

171Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Views pg_settings pg_file_settings
• Команда SHOW ALL;

- аналог SELECT * FROM pg_settings;
- нельзя отфильтровать параметры

• Файлы postgresql.conf postgresql.auto.conf
ls -CF /var/lib/postgresql/tantor-se-16/data
base/ pg_logical/ pg_stat/ pg_wal/
global/ pg_multixact/ pg_stat_tmp/ pg_xact/
pg_commit_ts/ pg_notify/ pg_subtrans/ postgresql.auto.conf
pg_dynshmem/ pg_replslot/ pg_tblspc/ postgresql.conf
pg_hba.conf pg_serial/ pg_twophase/ postmaster.opts
pg_ident.conf pg_snapshots/ PG_VERSION postmaster.pid

• view a single parameter on a running or stopped
postgres instance -C parameter_name

View parameters

View parameters

pg_file_settings view contains parameters that are explicitly specified in the parameter files . This
view can be useful for pre-testing changes to configuration files - to see if an error was made when
editing the files. The pg_file_settings view does not show the current values that the instance is
using. The applied column has the value "f" if the parameter value is different from the current one
and a cluster restart is required to apply the value from the file. In other cases (the value has not
changed or it is enough to reread the files), the value in the applied column will be " t ".
pg_settings view shows the current effective values of the parameters. The SHOW ALL; command

is similar to a query on the pg_settings view , but you cannot display only some of the parameters,
so SHOW ALL; is inconvenient.
The contents of any file can be viewed using the function
SELECT pg_read_file ('./postgresql.auto.conf') \g (tuples_only=on
format=unaligned)
pg_hba_file_rules view shows the contents of the pg_hba.conf file . The error column of this

view provides a description of the error if one was made while editing the file. The pg_hba.conf and
pg_ident.conf files contain security settings.
postgresql.conf file is edited manually.
View a single parameter on a running or stopped instance:
postgres -C parameter_name

https://docs.tantorlabs.ru/tdb/en/17_5/se/config-setting.html

172Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Views pg_settings pg_file_settings
• SHOW ALL

command ; - similar to SELECT * FROM pg_settings;
- parameters cannot be filtered

• Postgresql.conf files postgresql.auto.conf
ls -CF /var/lib/postgresql/tantor-se-16/data
base/ pg_logical/ pg_stat/ pg_wal/
global/ pg_multixact/ pg_stat_tmp/ pg_xact/
pg_commit_ts/ pg_notify/ pg_subtrans/ postgresql.auto.conf
pg_dynshmem/ pg_replslot/ pg_tblspc/ postgresql.conf
pg_hba.conf pg_serial/ pg_twophase/ postmaster.opts
pg_ident.conf pg_snapshots/ PG_VERSION postmaster.pid

• view a single parameter on a running or stopped
postgres instance -C parameter_name

View parameters

Main postgresql.conf parameter file

postgresql.conf file is the main file that stores the cluster configuration parameters. There are
about 370 configuration parameters, plus parameters for extensions and shared libraries (*.so)
loaded using the shared_preload_libraries configuration parameter.
The file is created by the initdb utility from the example file
/opt/tantor/db/17/share/postgresql$ ls -w 1 *.sample
pg_hba.conf.sample
pg_ident.conf.sample
pg_service.conf.sample
postgresql.conf.sample
psqlrc.sample
to the *.sample files . Commented lines start with the # symbol.
initdb utility makes changes to some of the lines depending on the parameters passed to it,

environment variables set before its launch, and internal logic. The changes can be viewed by
comparing the files
diff postgresql.conf postgresql.conf.sample
65c65
< max_connections = 100 # (change requires restart)

> #max_connections = 100 # (change requires restart)
The list of parameters that postgres responds to (not extension parameters and arbitrary application

parameters) can be output to the file
postgres --describe-config > file.txt
The columns in the file are separated by tabs.
Using include and include_dir can be useful for companies that provide cloud solutions in the

form of a large number of clusters with almost the same configuration for different clients. But you
need to remember that the parameter specified "below" overrides the parameter specified "above"
(closer to the beginning of the configuration file).

173Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the main file that stores cluster configuration parameters
• can contain more than 370 parameters plus parameters of

extensions and shared libraries (*.so)
• Created based on the postgresql.conf.sample file by the

initdb utility
• Can be edited
• You can include the contents of other files using the include

and include_dir configuration parameters set inside
postgresql.conf

Main postgresql.conf parameter file

Parameter file postgresql.auto.conf

postgresql.auto.conf file is a text file located in the PGDATA directory . It can be edited
directly, but it is not recommended because you can make a typo. The purpose of its creation is to be
able to make changes to the cluster configuration parameters using the ALTER SYSTEM command ,
including when connecting over a network, without having to edit files in the server file system.
Syntax
ALTER SYSTEM SET parameter { TO | = } { value [, ...] | DEFAULT };
ALTER SYSTEM RESET parameter;
ALTER SYSTEM RESET ALL;
Changes after this command, as well as after editing any configuration files, are not applied, you need

to reread the configuration or reboot the cluster. Rebooting the cluster is only needed to apply
parameters that cannot be changed dynamically (without rebooting the cluster). Such parameters can
be called "static".
Only users with the SUPERUSER attribute and users who have been granted the ALTER SYSTEM
privilege can change cluster parameters using the ALTER SYSTEM command .
The command cannot be executed within a transaction.

174Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Located in the PGDATA directory
• Parameters are added by the command

› ALTER SYSTEM SET parameter = value;
• The parameters are removed by the command
ALTER SYSTEM RESET parameter;
ALTER SYSTEM RESET ALL;

• In order for the new values to take effect after changing with
the ALTER SYSTEM command , you need to reread the
configuration or reboot the cluster.

Parameter file postgresql.auto.conf

Applying Configuration Parameter Changes

To apply changes (reread) in text files of configuration parameters, it is most convenient to use the
function
SELECT pg_reload_conf();
pg_reload_conf

t
(1 row)
Can be used pg_ctl:
pg_ctl reload -D /var/lib/postgresql/tantor-se-17/data
server signaled
You can send the SIGHUP signal (number 1) to the main process.
For example, to send a signal to processes named postgres (synonym "postmaster") of all running

PostgreSQL instances:
killall -1 postgres
Parameters set in postgresql.auto.conf override the values of postgresql.conf parameters
If a parameter is specified multiple times in postgresql.conf, the one specified closest to the end of the

file is applied.

175Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• To apply changes, all configuration files are reread and
changes are applied that can be made without rebooting the
cluster.

• Methods:
› SELECT pg_reload_conf();
› pg_ctl reload
› sudo killall -1 postgres

• Parameters in postgresql.auto.conf override values of
parameters in postgresql.conf

• If a parameter is specified multiple times in postgresql.conf,
the one specified closer to the end of the file is applied.

Applying parameter changes

Privileges to change parameters

Some configuration parameters can only be changed by a role with the SUPERUSER attribute.
alter user user1 superuser;
Starting with version 16, it became possible to grant the privilege to change parameters that can only

be changed by a role with the SUPERUSER attribute .
Granting privilege to change configuration parameter:
create role user1 login;
grant alter system on parameter update_process_title to user1;
There is also a privilege to set parameters at the session level:
grant set on parameter update_process_title to user1;
You can revoke the granted privilege using the command
revoke alter system, set on parameter update_process_title from user1;
You can view the list of privileges using the psql command:
\dconfig+ *
The privileges will be listed in the Access privileges column.
postgres=# \dconfig+ update_process_title
List of configuration parameters
Parameter | Value | Type | Context | Access privileges
----------------------+------+------+-----------+----------------------
update_process_title | off | bool | superuser | postgres= s A /postgres+
| | | | user1= s /postgres
Where A - right to ALER SYSTEM , s - right to SET .
Disadvantage - you can't filter by the presence of a privilege. It is more convenient to use the query
select * from pg_parameter_acl; which gives only those parameters for which privileges have
been assigned
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-priv.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/view-pg-settings.html

176Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The parameter type is specified in the context column of the
pg_settings view .

• The ALTER SYSTEM command can be executed by a role with the
SUPERUSER attribute and by those roles that have been granted
the GRANT ALTER SYSTEM on PARAMETER parameter_name to role
privilege;

• You can view the list of privileges using the psql command:
\dconfig+ privilege_name

Parameter | Value | Type | Context | Access privileges
----------------------+-------+------+-----------+----------------------
update_process_title | off | bool | superuser | postgres=sA/postgres+

| | | | user1=s/postgres

• or by query select * from pg_parameter_acl;
• A - right to ALTER SYSTEM, s - right to SET

Privileges to change parameters

Parameter Classification: Context

There are many configuration parameters - more than 370. Next, let's look at how parameters are
classified. The first section of classification is by the method (context) of applying the parameter.
The context column of the pg_context view has 7 possible values.
select context, count(name) from pg_settings
where name not like '%.%' group by context order by 1;
context | count
-------------------+-------
backend | 2
internal | 18
postmaster | 64
sighup | 96
superuser | 44
superuser-backend | 4
user | 143
(7 rows)
internal - not set in configuration files and are read-only
postmaster - requires restarting the cluster instance to apply
sighup - to use it, it is enough to reread the files, for example, execute the pg_reload_conf()
function or the pg_ctl reload utility
superuser - can be set at session level, but user must have SUPERUSER attribute or privilege to

change this parameter
superuser-backend - cannot be changed after session creation, but can be set for a specific session at

connect time if privileges are present
backend - cannot be changed after session creation, but can be set for a specific session at the time

of connection by any role
user - can be changed during a session or at the cluster level in the parameter files, in the latter case

by rereading the files
https://docs.tantorlabs.ru/tdb/en/17_5/se/view-pg-settings.html

177Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• internal - read-only parameters
• postmaster - cluster instance restart required
• sighup - just reread the configuration files
• superuser - can be set at session level, but user must have

SUPERUSER attribute or privilege to change this parameter
• superuser-backend - cannot be changed after session creation,

but can be set for a specific session at connect time if privileges
are present

• backend - same as the previous one, but no privileges are
needed

• user - can be changed during a session or at the cluster level

Parameter Classification: Context

Context parameters internal

In PostgreSQL version 17, there are 19 parameters whose values cannot be changed. They are not set
in configuration files and are read-only.
Some parameters are set during assembly and set PostgreSQL restrictions (limits). Some parameters

are descriptive - reflect the current operating mode of the instance or cluster and will change the value
when the mode is changed according to the documented procedure.
The list of parameters of this type (internal) can be viewed by query:
select * from pg_settings where context=' internal ' order by 1;
Parameters whose values can change:
in_hot_standby - descriptive parameter for the replica
data_directory_mode - descriptive, shows the permissions that were set on the data_directory
(PGDATA) at the time the instance was started
server_encoding - set when creating a cluster
server_version and server_version_num - the procedure for updating the version
wal_segment_size - changed by pg_resetwal utility
shared_memory_size* - descriptive parameters, depend on huge_page_size
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-preset.html

178Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• 19 parameters in version 17
• read only

Context parameters internal

postgres=# select name, setting from pg_settings where context='internal' order by 1;
name | setting

----------------------------------+----------
block_size | 8192
data_checksums | on
data_directory_mode | 0700
debug_assertions | off
huge_pages_status | off
in_hot_standby | off
integer_datetimes | on
max_function_args | 100
max_identifier_length | 63
max_index_keys | 32
segment_size | 131072
server_encoding | UTF8
server_version | 17.2
server_version_num | 170002
shared_memory_size | 189
shared_memory_size_in_huge_pages | 95
ssl_library | OpenSSL
wal_block_size | 8192
wal_segment_size | 16777216
(19 rows)

Classification of parameters: Levels

If a parameter in the context column of the pg_settings view has a value other than
internal , then this parameter can be changed using the ALTER SYSTEM command or by editing the
configuration parameter files.
If the parameter in the context column of the pg_settings view has the values user,
backend, superuser , then the value of the parameter can be changed at other levels:
At the database level, you can set the parameter value using the commands:
ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT };
ALTER DATABASE name SET parameter FROM CURRENT;
ALTER DATABASE name RESET parameter;
ALTER DATABASE name RESET ALL;
At the role level or the role connected to the database:
ALTER ROLE .. [IN DATABASE name] SET parameter { TO | = } { value | DEFAULT}
ALTER ROLE .. [IN DATABASE name] SET parameter FROM CURRENT;
ALTER ROLE .. [IN DATABASE name] RESET parameter;
ALTER ROLE .. [IN DATABASE name] RESET ALL;

Note: The category column of the pg_settings view reflects the name of the subsystem
affected by the setting, not the installation level. This column is used to classify settings.
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-alterdatabase.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-alterrole.html

179Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Cluster team
› ALTER SYSTEM SET parameter = value;

• Databases
› ALTER DATABASE name SET parameter = value;

• Roles
› ALTER ROLE role SET parameter = value;

• Sessions created by a role that connects to a specific database
› ALTER ROLE role IN DATABASE name SET parameter = value;

Classification of parameters: Levels

Classification of parameters: Levels

At the transaction level, the value is changed using the SET LOCAL command .
Example:
SET work_mem to '16MB'; or SELECT set_config('work_mem', '16MB', false); if false

, then set at session level
SET work_mem to DEFAULT; resets the parameter to the value that it would have if no SET

commands had been executed in the current session
RESET work_mem; same as previous command
SET LOCAL work_mem to '16MB'; or SELECT set_config('work_mem', '16MB', true);
ALTER {PROCEDURE | FUNCTION} and then one of the following:
SET parameter { TO | = } { value | DEFAULT };
SET parameter FROM CURRENT

RESET parameter
RESET ALL
The last two options remove from the subroutine properties the parameter values that were previously

set (when it was created or modified).
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-set.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-alterprocedure.html

180Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Within a session
› SET work_mem to '16MB';
› SELECT set_config('work_mem', '16MB', false);

• Transactions
› SET LOCAL work_mem to '16MB';
› SELECT set_config('work_mem', '16MB', true);

• During the execution of a function or procedure
› CREATE {FUNCTION|PROCEDURE} ..
SET parameter {TO value | = value | FROM CURRENT}

› ALTER {PROCEDURE | FUNCTION}..
SET parameter {TO | = }{value | DEFAULT};

Classification of parameters: Levels

Table level parameters

At the table and index level , it is possible to set storage parameters. Storage parameters at the table
level can override the parameters for autovacuum when working with a table and/or its TOAST table.
ALTER TABLE name SET (storage_parameter = value);
ALTER TABLE name ALTER COLUMN name SET STATISTICS number; overrides the
default_statistics_target configuration parameter for the table column. Range is 0 to 10000. -1
reverts to use default_statistics_target .
ALTER INDEX name ALTER COLUMN index_column_number SET STATISTICS number;
overrides the default_statistics_target configuration parameter for the index column.
Options with the "toast." prefix affect the operation of the TOAST table. If they are not set, the TOAST

table options are in effect.
postgres=# alter table name set (toast. <press tab key twice>
toast.autovacuum_enabled
toast.autovacuum_freeze_max_age
toast.autovacuum_freeze_min_age
toast.autovacuum_freeze_table_age
toast.autovacuum_multixact_freeze_max_age
toast.autovacuum_multixact_freeze_min_age
toast.autovacuum_multixact_freeze_table_age
toast.autovacuum_vacuum_cost_delay
toast.autovacuum_vacuum_cost_limit
toast.autovacuum_vacuum_insert_scale_factor
toast.autovacuum_vacuum_insert_threshold
toast.autovacuum_vacuum_scale_factor
toast.autovacuum_vacuum_threshold
toast.log_autovacuum_min_duration
toast.vacuum_index_cleanup
toast.vacuum_truncate

postgres=# alter table t set (toast. <press tab key twice>
There are quite a few index types in PostgreSQL. Index storage parameters depend on their type. For

example, for indexes of the btree, hash, GiST, SP-GIST type, you can set the fillfactor parameter. For
btree - deduplicate_items. For GiST - buffering. For GIN - fastupdate. For BRIN - pages_per_range and
autosummarize. In PostgreSQL, you can add both indexes and data storage methods to tables using
extensions.
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createtable.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-altertable.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createindex.html

181Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Installed by command
› ALTER TABLE name SET(storage_parameter = value);

• Can be set in the CREATE TABLE command
• Override similar configuration parameters when autovacuum

works with a specific table and/or its TOAST table
• The command to override the default_statistics_target

configuration parameter for a table column:
› ALTER TABLE name ALTER COLUMN name SET STATISTICS
number;

Table-level storage parameters

Classification of parameters: Categories

The parameters are logically divided into categories. The categories describe what the parameters are
intended for. The names of the categories can be viewed by the query:
select category, count(name) from pg_settings group by category order by 2 desc;

category | count
--+-------
Client Connection Defaults / Statement Behavior | 31
Developer Options | 25
Resource Usage / Memory | 22
Query Tuning / Planner Method Configuration | 22
Reporting and Logging / What to Log | 21
Preset Options | 18
Write-Ahead Log / Settings | 15
Connections and Authentication / SSL | 14
Autovacuum | 13
Query Tuning / Planner Cost Constants | 13
Reporting and Logging / Where to Log | 13
Client Connection Defaults / Locale and Formatting | 12
Replication / Standby Servers | 11
...
(42 rows)
Many parameters relate to performance tuning: query execution tuning, autovacuum.

182Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Categories describe what the parameters are for.
select category, count(name) from pg_settings group by category order by

2 desc;
category | count

---+-------
Client Connection Defaults / Statement Behavior | 31
Developer Options | 25
Resource Usage / Memory | 22
Query Tuning / Planner Method Configuration | 22
Reporting and Logging / What to Log | 21
Preset Options | 18
Write-Ahead Log / Settings | 15
Connections and Authentication / SSL | 14
Autovacuum | 13
Query Tuning / Planner Cost Constants | 13

...
(42 rows)

Classification of parameters: Categories

Category: "For developers"

As an example, let's look at the parameters of the Developer Options category .
Developer Options category includes options that should not be used in a production database.

However, some of these options can be used to restore the contents of tables if a block is damaged in
them and recovery by other means has not been successful (the block is damaged in physical replicas
and backups). An example of such options is:
ignore_system_indexes
Ignore system indexes when reading system tables (but still update indexes when tables are

modified). This can be useful if corruption in system indexes prevents the creation of a session to
repair the corruption.
zero_damaged_pages

Damage in the service area of a block (page) usually prevents reading data on this page and the
selection of rows (using the SELECT command) is interrupted. This parameter allows you to skip the
contents of the page, considering that there are no rows in it, and continue working with other pages.
This allows you to extract rows from undamaged pages. However, at the logical level, the integrity of
the data may suffer. The parameter does not change the contents of the pages: they remain damaged,
and are not filled with zeros.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-developer.html

183Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Category of options Developer Options
• Parameters of this category should not be used in industrial operation.
• The parameters in this category can help to retrieve data in complex

cases of page corruption.
• ignore_system_indexes - ignore system indexes when reading system

tables (but still update indexes when tables are modified). This can be
useful if corruption in system indexes prevents the creation of a session
to repair the corruption.

• zero_damaged_pages - damage in the service area of the block
prevents reading data from this block. The parameter allows you to
consider the block empty, as if there are no lines in it

Category: "For developers"

Category: "Custom Settings"

Extensions and libraries loaded by the shared_preload_libraries parameter or the LOAD
command can have their own configuration parameters. These parameters are processed according to
the logic of regular parameters. However, these parameters are unknown to the DBMS until the module
is loaded. In particular, the DBMS cannot check the validity of parameter values when they are
changed, for example, by the ALTER SYSTEM command , so before loading the library, this command
cannot set parameters unknown to the DBMS, even if the parameter name contains a dot. They can be
set at the session level. By default, if a parameter name contains a dot, the DBMS considers such
parameters customized options (can be translated as "user settings", "non-system parameters").
Extension and library developers specify the name of their extension as a prefix and come up with
parameter names. You can also save arbitrary parameter names if the name contains a dot in
postgresql.conf . As soon as the library is loaded (for example, the LOAD command) and
"registers" its parameters by a program call, the DBMS checks the parameter values and if they are
invalid, it sets them to the default value specified by the library. Those parameters that the library did
not register when loading by a program call are removed from memory, as if they were not set in the
postgresql.conf configuration file and at other levels. A warning about this can be written to
the cluster log.
Parameter names without a period in the name must exist in the DBMS; using a non-existent parameter

name (for example, a typo) in the postgresql.conf file will prevent the cluster from starting.
waiting for server to start....
LOG: unrecognized configuration parameter "myappparam1" in file
"/var/lib/postgresql/tantor-se-17/data/postgresql.conf" line 834
FATAL: configuration file "/var/lib/postgresql/tantor-se-17/data/postgresql.conf"
contains errors
https://docs.tantorlabs.ru/tdb/en/17_ 5 /se/runtime-config-custom.html

184Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Category of parameters Customized Options
• The category includes parameters of extensions, libraries or just arbitrary

parameters, in the name of which there is a dot
• library and extension developers provide the ability to customize their

functionality in a standard way
SET myapp.par1 = '20';
SET
SHOW myapp.par1;
myapp.par1

20
(1 row)

Category: "Custom Settings"

Configuration parameter names and values

At the beginning of the chapter we considered that parameter values can be of several types. Let's
look at them in more detail. Parameter types:
Boolean value: Values can be set as on, off, true, false, yes, no, 1, 0
String: It is better to use apostrophes. If there is an apostrophe symbol inside the string, then put two

apostrophes instead of one. If the string contains an integer, quotation marks are not necessary
Integer or decimal number : If the integer is written in hexadecimal (starts with 0x) it must be enclosed

in quotation marks. If there is a zero at the beginning, then it is an integer value in octal.
Number with unit: Some numeric parameters have an implicit unit, as they describe the amount of

memory or time. If you specify a number without a unit, the number can be interpreted as a byte,
kilobyte, block, milliseconds, seconds, minutes. The unit can be found in the unit column of the
pg_settings view . It is convenient to use the unit as a suffix. It can be specified immediately after
the number or after one space. In any case, be sure to enclose the values in apostrophes. Valid memory
units (case is important):
B (bytes), kB (kilobytes), MB (megabytes), GB (gigabytes) and TB (terabytes).
Valid icons for time:
us (microseconds), ms (milliseconds), s (seconds), min (minutes), h (hours) and d (days).
Enum: written in the same way as string parameters, but limited to a set of valid values that are case-

insensitive. The list of values is specified in the enumvals column of the pg_settings view .

185Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Parameter names are case insensitive.
• Parameter values are one of five types:
• boolean: values can be specified as on, off, true, false,
yes, no, 1, 0

• string: values are best specified in apostrophes
• integer or decimal number: in units from the unit column of
the pg_settings view , or just a number

• enum : value from the list in the enumvals column of the
pg_settings view

Configuration parameter names and values

Configuration parameter transaction_timeout

Let's look at some examples of configuration parameters. This will help you understand how changing
parameter values affects the operation of the instance.
transaction_timeout allows you to cancel any transaction or single statement that exceeds the

specified time period, not just idle ones. This parameter applies to both explicit transactions (started
with the BEGIN command) and implicitly started transactions corresponding to a single statement.
Introduced in Tantor Postgres 15.4. A value of zero (the default) disables the timeout.
statement_timeout allows you to set the maximum execution time for a single command. If the time

is exceeded, the command is interrupted. The time is counted from the moment the server process
receives the command until its execution is complete.
Transactions and single queries (using snapshot) hold the database event horizon. This prevents old

row versions from being purged. The transaction_timeout and statement_timeout parameters
allow you to protect the horizon from being held by transactions and queries.
To protect against idle transactions, you can use idle_in_transaction_session_timeout . If

exceeded, the session is terminated:
postgres=*# commit;
IMPORTANT: Connection closed due to idle timeout in transaction
The server unexpectedly closed the connection
Most likely the server stopped working due to a failure.
before or during the execution of a request.
Connection to the server was lost. Recovery attempt was successful.
transaction_timeout parameter can be set at the session level, which allows it to be used to

implement logic by which, after a certain time, the results of transactions are no longer relevant and are
not needed.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-resource.html

186Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• allows you to cancel any transaction that lasts longer than a
specified period of time

• the effect of the parameter applies to both explicit transactions
(started with the BEGIN command) and implicitly started
transactions corresponding to a separate command

• A value of zero (default) disables the timeout.
• Allows you to set a limit on the duration of transactions
• statement_timeout allows you to set the maximum execution

time for a single command

Configuration parameter transaction_timeout

Autonomous transactions

Autonomous transactions can be implemented, for example, via dblink to your own database, but the
problem is in performance. Autonomous transactions in Tantor Postgres SE provide high-speed
implementation of autonomous transactions. A pool of autonomous sessions is created, serviced by
background workers. The pool is generated when the first autonomous transaction is created. Server
processes grab a session from the pool, pass the autonomous transaction operators for execution, and
return the connection to the pool. Resources for creating and stopping processes servicing
autonomous transactions are not spent. The server and background processes exchange data
synchronously via shared memory. Nested autonomous transactions are allowed. Additional (up to a
hundred) background processes are launched to service nested autonomous transactions.
An example of how an autonomous transaction works:
CREATE TABLE tbl(a int);
CREATE OR REPLACE FUNCTION func() RETURNS void
LANGUAGEplpgsql
AS$$
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO tbl VALUES(1);
END;
$$;
START TRANSACTION;
SELECT func();
ROLLBACK;
SELECT * FROM tbl;
The implementation of autonomous transactions was proposed by Tantor Labs to the community:
https://www.postgresql.org/message-id/f7470d5a-3cf1-4919-8404-5c4d91341a9f@tantorlabs.com

187Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres SE has
autonomous transactions

• used in plpgsql routines
• allow you to execute

commands and save the
results of their execution
regardless of whether the
transaction in which the
autonomous transaction was
called is committed, rolled
back, or aborted

Autonomous transactions

Configuration parameter transaction_buffers

PostgreSQL has buffers in shared memory of an instance, which are called "SLRU buffers" because
they use the Simple Least Recently Used buffer eviction algorithm. Starting with PostgreSQL version 17
(in Tantor Postgres starting with version 15.4), the sizes of SLRU caches can be set by the configuration
parameters commit_timestamp_buffers, multixact_member_buffers,
multixact_offset_buffers, notify_buffers, serializable_buffers,
subtransaction_buffers, transaction_buffers .
The default values of the commit_timestamp_buffers, transaction_buffers,
subtransaction_buffers parameters are set depending on the size of the buffer cache (the value
of the shared_buffers parameter).
transaction_buffers parameter specifies the size of shared memory used to cache the contents

of the PGDATA/pg_xact subdirectory containing transaction commit status. The default value is 0,
which is equal to the size of the shared buffer pool divided by 512 (shared_buffers/512), but not
less than 4 blocks. Changing this value requires restarting the instance.
Caching helps to quickly determine the status of a transaction. The need to determine the status of

recent transactions and up to the horizon of the cluster databases arises very often for server
processes. When processes see versions of changed rows in blocks, they often need to determine the
transaction status of each row version processed. Transaction commit status uses vacuum to find the
transaction status when cleaning up old row versions. Commit status uses two bits per transaction
(committed COMMIT or explicitly rolled back ROLLBACK or implicitly aborted). If
autovacuum_freeze_max_age set to the maximum allowed value for 32-bit transaction counters of 2
billion, pg_xact is expected to be about half a gigabyte in size, and pg_commit_ts is expected to be
about 20 GB.
The downside of increasing the value of autovacuum_freeze_max_age (as well as
vacuum_freeze_table_age) is that the pg_xact subdirectories And pg_commit_ts database
cluster will take up more space. The default value in builds using a 32-bit transaction counter is 200
million transactions, which corresponds to about 50 MB of pg_xact storage and about 2 GB of
pg_commit_ts storage . For 64-bit counters, the default value for autovacuum_freeze_max_age is
10 billion.
Subtransaction statuses are also saved. When a top-level transaction is committed or rolled back, the

subtransaction statuses (two bits each) are also written to the pg_xact subdirectory . When a top-
level transaction is aborted, all of its subtransactions are aborted as well.

188Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• sets the size of shared memory used to cache the contents of
PGDATA/pg_xact - the subdirectory with transaction commit status

• The default value is 0, which is equal to the size of the shared
buffer pool divided by 512 (shared_buffers/512)

Configuration parameter transaction_buffers

Parameters multixact_members_buffers and multixact_offsets_buffers

Instances may experience performance degradation if there are a large number of concurrent
transactions , subtransactions, many multitransactions, or SERIALIZABLE transactions . Increasing the
buffer sizes ("SLRU caches") helps improve performance.
The PostgreSQL parameters multixact_offsets_buffers and multixact_members_buffers
set the size of shared memory used to cache the contents of two
PGDATA/pg_multixact subdirectories that store the history of completed and ongoing
multitransactions. The history is needed to check the status (not completed, committed, aborted) of
transactions. Changing the parameter values requires restarting the instance.
Vacuuming allows you to remove old files from the pg_multixact/members and
pg_multixact/offsets subdirectories .
Since only one transaction ID (the "xmax" field) can be stored in a row header, PostgreSQL uses

multitransactions to support row locking by multiple transactions simultaneously. The list of
transactions included in a multitransaction ID is stored in the pg_multixact subdirectory.
Tantor Postgres SE uses 64-bit transaction IDs, which are unlikely to max out and do not require

modulo 32 arithmetic to compare them. At the page level, a wrap-around problem is possible if a
session holds a snapshot that has accumulated more than 4 billion transactions.
You can check that the cluster uses 64-bit transaction identifiers by the parameter values:
\dconfig autovacuum_*age
List of configuration parameters
Parameter | Value
-------------------------------------+-------------
autovacuum_freeze_max_age | 10000000000
autovacuum_multixact_freeze_max_age | 20000000000
The values shown are 10 billion and 20 billion, which is greater than the 4 billion maximum for 32-bit

numbers.

189Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• sets the size of the shared memory used to cache the contents of
the two PGDATA/pg_multixact subdirectories

• verify that the cluster uses 64-bit transaction identifiers by the
parameter values:

\dconfig autovacuum_*age
List of configuration parameters

Parameter | Value
-------------------------------------+-------------
autovacuum_freeze_max_age | 10000000000
autovacuum_multixact_freeze_max_age | 20000000000

• If the values are greater than 4 billion, then 64-bit transaction and
multitransaction counters are used

Parameters multixact_members_buffers and
multixact_offsets_buffers

subtransaction_buffers configuration parameter

subtransaction_buffers specifies the size of shared memory used to cache the contents of
PGDATA/pg_subtrans .
The buffer size can be viewed:
SELECT name, allocated_size, pg_size_pretty(allocated_size) FROM
pg_shmem_allocations where name like '%btrans%';
name | allocated_size | pg_size_pretty
----------------+----------------+----------------
subtransaction | 267520 | 261 kB
Subtransactions can be explicitly started either by using the SAVEPOINT command or by other means,

such as the EXCEPTION clause of the PL/pgSQL language. That is, subtransactions are used quite
actively.
The transaction ID of each subtransaction's immediate parent transaction is written to the
pg_subtrans catalog . Transaction IDs of top-level transactions are not written because they do not
have a parent transaction. Transaction IDs of read-only subtransactions are also not written.
subxid s are cached in shared memory for each backend by default . Once this limit is exceeded,

disk I/O overhead increases significantly, as the subxid data has to be looked up in
pg_subtrans . The subtrans_buffers parameter avoids this.
The VACUUM, CREATE/DROP DATABASE, CREATE /DROP TABLESPACE commands cannot be

executed in a transaction because they implicitly generate transactions:
postgres=# begin;
BEGIN
postgres=*# vacuum;
ERROR: VACUUM cannot run inside a transaction block

190Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• sets the size of shared memory used to cache the contents of
PGDATA/pg_subtrans

• subtransaction is created:
› SAVEPOINT team
› if the block in plpgsql language contains the EXCEPTION section
› in psql implicitly before each command in a transaction, if the

parameter is enabled (interactive or on) by the command:
\set ON_ERROR_ROLLBACK interactive

• the presence of the EXCEPTION section implicitly sets a
savepoint before the start of the block (before BEGIN)

subtransaction_buffers configuration parameter

notify_buffers configuration parameter

notify_buffers configuration parameter specifies the size of the shared memory used to cache the
contents of PGDATA/pg_notify .
Used in the NOTIFY/LISTEN architecture for data exchange between processes:
postgres=# listen abc;
LISTEN
postgres=# notifyabc;
NOTIFY
Asynchronous notification "abc" received from server process with PID 1284.

191Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• sets the size of shared memory used to cache the contents of
PGDATA/pg_notify

• Default value is 8 blocks (64Kb)
• Used in the NOTIFY/LISTEN architecture for data exchange

between processes:
postgres=# listen abc;
LISTEN
postgres=# notify abc;
NOTIFY
Asynchronous notification "abc" received from
server process with PID 1234.

notify_buffers configuration parameter

Setting parameters when creating a cluster

The initdb cluster creation utility has parameters (keys) that set the properties of the cluster being
created. initdb is also affected by environment variables set before the utility is launched. initdb
parameters override the values set by environment variables. Some parameters cannot be changed
after the cluster is created.
Some of the parameters specified when creating a cluster may change after it has been created.
initdb utility parameter -k or --data-checksums specifies the calculation of checksums in the

blocks of data files located in tablespaces. In Tantor Postgres, checksum calculation is enabled by
default if the cluster is created by the installation utility. If the initdb utility is started manually, it
works as in PostgreSQL and the cluster is created without setting the checksum calculation.
You can enable, disable, or verify file checksums using the pg_checksums utility . To verify

backups, use pg_verifybackup . You can find out whether checksums are enabled on a cluster using
the pg_controldata utility or look at the value of the configuration parameter (read-only)
data_checksum .
pg_controldata -D . | grep checksum
Data page checksum version: 0
Zero means disabled. A value other than zero means enabled.
It is not recommended to disable checksum verification. If a data block on the disk is damaged while

accessing this block, processes, including cleaning processes, will not be able to continue working.
This can lead to the impossibility of cleaning and freezing pages.
Why do I need to know these parameters? If during the transition to new major versions of the DBMS it

is necessary to create a cluster, then it must be created with the same parameters as the one being
updated.
https://docs.tantorlabs.ru/tdb/en/17_5/se/locale.html

192Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• environment variables and parameters of the initdb utility
• initdb parameters --lc-collate, --lc-ctype, --encoding

cannot be changed after cluster creation
• The values of localization parameters can be viewed using the

psql \l command
• The initdb -k or --data-checksums option specifies the

calculation of checksums in data file pages.
• You can enable and disable checksum calculation after

creating a cluster
• check status in psql \dconfig data_checksums
• Checksums of data blocks are verified using the

pg_checksums and pg_verifybackup utilities.

Setting parameters when creating a cluster

Permissions for the PGDATA directory

The initdb cluster creation utility has parameters (keys) that set the properties of the cluster being
created. initdb is also affected by environment variables set before the utility is launched. initdb
parameters override the values set by environment variables. Some parameters cannot be changed
after the cluster is created.
Some of the parameters specified when creating a cluster may change after it has been created.
initdb utility parameter -k or --data-checksums specifies the calculation of checksums in the

blocks of data files located in tablespaces. In Tantor Postgres, checksum calculation is enabled by
default if the cluster is created by the installation utility. If the initdb utility is started manually, it
works as in PostgreSQL and the cluster is created without setting the checksum calculation.
You can enable, disable, or verify file checksums using the pg_checksums utility . To verify

backups, use pg_verifybackup . You can find out whether checksums are enabled on a cluster using
the pg_controldata utility or look at the value of the configuration parameter (read-only)
data_checksum .
pg_controldata -D . | grep checksum
Data page checksum version: 0
Zero means disabled. A value other than zero means enabled.
It is not recommended to disable checksum verification. If a data block on the disk is damaged while

accessing this block, processes, including cleaning processes, will not be able to continue working.
This can lead to the impossibility of cleaning and freezing pages.
Why do I need to know these parameters? If during the transition to new major versions of the DBMS it

is necessary to create a cluster, then it must be created with the same parameters as the one being
updated.
https://docs.tantorlabs.ru/tdb/en/17_5/se/locale.html

193Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The initdb -g or --allow-group-access option sets permissions
to 0750 (rwx rx ---)

• if you do not specify, then you do not need to recreate the
cluster, you can change the permissions on PGDATA (and
subdirectories) to acceptable values

• Valid values are 0750 and 0700 :
• pg_ctl start
waiting for server to start....
FATAL: data directory "/var/lib/postgresql/tantor/se16/data"
has invalid permissions

DETAIL: Permissions should be u=rwx (0700) or u=rwx,g=rx (
0750).

stopped waiting

Permissions for the PGDATA directory

PostgreSQL data block size

By default, the page size (data block) is 8 kilobytes (or 8192 bytes). The data block size is set during
compilation and in version 16 cannot be changed without recompiling the software. It is defined by the
BLCKSZ macro , which is set by default to 8K (8192 bytes) in the file
/opt/tantor/db/17/include/pg_config.h
You can find out the block size
pg_controldata | grep 'block size'
Database block size : 8192
WAL block size: 8192
or the block_size configuration parameter
The data block size determines the limits for many PostgreSQL cluster characteristics.
https://docs.tantorlabs.ru/tdb/en/17_5/se/limits.html

194Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• size 8192 bytes = 8Kb set at compile time
• synonym for “page”
• when in memory, it occupies a buffer in the buffer cache

PostgreSQL data block size

PostgreSQL Limitations

The PostgreSQL data block size can be 16Kb, 32Kb. Currently, 8Kb is chosen empirically (by trial and
error). It is determined by the current hardware development (for example, cache sizes). Internal
operation algorithms, constants, parameters were chosen based on the 8Kb block size. When changing
the block size, bottlenecks may appear under heavy load. Relations (synonym "class") are called :
tables, indexes, sequences, views, foreign tables, materialized views, composite types . If the volume of
data stored in table blocks exceeds 32 TB, it is worth using partitioned tables.
TOAST tables are also limited to 32TB, which may limit the number of rows in the main table.

Moreover, the number of fields that can be extracted from row versions in TOAST is no more than 4
billion (2 to the power 32) . This may limit the number of rows in the table.
The block size affects the maximum relation size. Large field values up to 1GB can be stored in text,
varchar, bytea columns . This limitation follows from the fact that the maximum field size in a
TOAST table is 1GB.
You can use the legacy lo data type . All values of this type in one database are stored in one

system catalog table. Since the maximum size of a non-partitioned table is 32 TB, the maximum lo size
in one database is also 32 TB. For example, one database can store no more than 8 fields of 4 TB each.
The number of columns on which an index can be created is limited by the INDEX_MAX_KEYS macro .

The value of the constant is shown by the max_index_keys parameter .
There is also a limit on the number of function parameters equal to 100, but it can be increased to 600

(with a block size of 8 KB) by recompilation (macro FUNC_MAX_ARGS in pg_config_manual.h).
The maximum size of the string buffer (MaxAllocSize in stringinfo.c) is 0x3fffffff = 1

Gigabyte minus 1 byte. When processing strings (SELECT * and COPY commands), memory is
allocated for the string buffer. If the size of the processed data is larger and the buffer exceeds this
limit when increasing its size again, an error is returned: "Cannot enlarge string buffer" . The
Tantor Postgres configuration parameter enable_large_allocations and a similar parameter of the
pg_dump utility can increase the size of the string buffer to 2 GB.

195Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

PostgreSQL Limitations
database size not limited

number of databases in the cluster 4,294,950,911

relations in one database 1,431,650,303

ratio size 32TB (8KB block)

blocks in the table 4,294,950,911

columns in the table 1600

columns in the selection (SELECT) 1664

field size (including text, bytea) 1GB

large object size (lo) 4TB

total lo volume in the database 32TB (8KB block)

identifier length 63 bytes

indexes per table unlimited

string buffer size 1GB-1

columns in a composite index 32

Parameter enable_large_allocations

This Tantor Postgres parameter increases the size of the StringBuffer in the local memory of the
instance processes from 1 gigabyte to 2 gigabytes . The size of one table row when executing SQL
commands must fit in the StringBuffer. If it does not fit, then any client with which the server process
works will receive an error, including the pg_dump and pg_dumpall utilities . The size of a table
row field of all types cannot exceed 1 GB, but there can be several columns in the table and the row
size can exceed both a gigabyte and several gigabytes.
pg_dump utility may refuse to dump such rows because it does not use the WITH BINARY option of
the COPY command . For text fields, a non-printable character occupying one byte will be replaced by
a sequence of printable characters occupying two bytes (for example, \n) and the text field may
increase in size up to twice.
postgres=# select * from pg_settings where name like '%large%'\gx
name | enable_large_allocations
setting | off
category | Resource Usage / Memory
short_desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser
vartype | bool
boot_val | off
и у утилит командной строки:
postgres@tantor:~$ pg_dump --help | grep alloc
--enable-large-allocations enable memory allocations with size up to 2Gb

The parameter can be set at the session level. The StringBuffer is allocated dynamically during the
processing of each line, not when the server process starts. If there are no such lines, the parameter
does not affect the operation of the server process.
This problem occurs with the row of the config table of the 1C:ERP applications, Integrated

Automation, Manufacturing Enterprise Management. Example:
pg_dump: error: Dumping the contents of table "config" failed: PQgetResult() failed.
Error message from server: ERROR: invalid memory alloc request size 1462250959
The command was: COPY public.config
(filename, creation, modified, attributes, datasize, binarydata) TO stdout;

196Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres DBMS parameter that increases the StringBuffer size
from 1 gigabyte to 2 gigabytes

• can be set at session level and by pg_dump, pg_dumpall utilities

• the problem occurs with the row of the config table of the 1C:ERP
applications, Integrated automation, Manufacturing enterprise
management

enable_large_allocations parameter

postgres=# select * from pg_settings where name like '%large%'\gx
name | enable_large_allocations
setting | off
category | Resource Usage/Memory
short_desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser
vartype | bool
boot_val | off

postgres@tantor:~$ pg_dump --help | grep alloc
--enable-large-allocations enable memory allocations with size up to 2Gb

Limitations on the length of identifiers

The maximum length of identifiers (table names, column names, indexes, etc.) is 63 characters. This
means that an identifier can contain up to 63 characters. This is a default limitation and applies to all
identifiers in the database.
For example, you can create a table with a name containing up to 63 characters:
CREATE TABLE my_really_long_table_name_with_63_characters(...);
Or a column with a name that also contains up to 63 characters:
ALTER TABLE my_table_name ADD COLUMN
my_really_long_column_name_with_63_characters INTEGER;
This limitation is in place to ensure compatibility with different systems and to make working with
databases easier. If you need to use longer identifiers, you should rethink your database design.
==================
identifiers exceeding this size are truncated, about which a warning is issued
create table sixty-three characters 456789 (n numeric);
NOTICE: identifier "sixty-three characters 456789 " will be truncated to "sixty-three
characters"
CREATE TABLE
\d sh*
Table "public.sixtythreecharacters"
Column | Type | Collation | Nullable | Default
--------+---------+-----------+-----------+----------+---------
n | numeric | | |
Identifiers include names of relations and columns. Identifiers can be enclosed in quotation marks. If
the identifier length exceeds 63 bytes, it is truncated. Identifiers without quotation marks must begin
with a letter.
The maximum length of an identifier is determined by the macro NAMEDATALEN-1 , which is set at
compile time. The value of the constant is shown by the parameter
postgres=# show max_identifier_length;
max_identifier_length

63
There are other restrictions, for example, the maximum number of function arguments is 100, and the
number of parameters in a query is 65535.

197Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The maximum length of identifiers (e.g. table names, columns,
indexes, etc.) is 63 characters.

• For example, you can create a table with a name containing up to
63 characters:

• CREATE TABLE
my_really_long_table_name_with_63_characters(...);

• Or a column with a name that also contains up to 63 characters:
• ALTER TABLE my_table_name ADD COLUMN
my_really_long_column_name_with_63_characters
INTEGER;

• identifiers exceeding this size are truncated, about which a
warning is issued

Limitations on the length of identifiers

Configuration parameters

"Configuration parameters" (config) and "configuration parameters" (settings) are similar, but they are
different concepts.
Some parameters are set during assembly (compilation, linking). View most of the parameters set

during assembly:
1)Command line utility pg_config
2)Function select * from pg_config();
For example, SHAREDIR defines a directory with extension files.
A question that may arise: I installed an extension and want to see what it includes. The easiest way is

to find the extension text files and look at the commands and parameters in them. Where can I find
these files? Answer: the extension control files are in the extension subdirectory of the
SHAREDIR directory .
List of control extension files :
ls $(pg_config --sharedir)/extension/*.control
Second question: I loaded a shared library, where is its file? Or - I want to load a library, where should I

copy its file? Answer: PKGLIBDIR points to the directory of shared libraries by default (files with the .so
extension). Libraries can be loaded with the LOAD command in a session or with the
shared_preload_libraries parameter .
pg_config --pkglibdir
/opt/tantor/db/17/lib/postgresql
BINDIR defines a directory with executable files, the path to which is added to the PATH environment

variable of the postgres user (.bash_profile file) during the installation of Tantor Postgres.
cat .bash_profile
export PATH=$PATH
export PATH=/opt/tantor/db/17/bin:$PATH
PGSYSCONFDIR specifies the directory where the pg_service.conf connection services file
is located.
If you create a service description in the services file, you can use it with psql

"service=service_description"
In Oracle Database, the services file has an analogue in the form of the tnsnames.ora file. The

pg_service.conf file is not in demand, it is not used by JDBC drivers, only by the libpq library.
https://docs.tantorlabs.ru/tdb/en/17_5/se/libpq-pgservice.html

198Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• installed during assembly and are not changed
• you can see:
• command line utility pg_config
• in the pg_config view
• pg_config() function
• SHAREDIR parameter specifies the directory with extension files.
• PKGLIBDIR points to the default shared library directory
• BINDIR specifies the directory containing executable files

Configuration parameters

Demonstration

View configuration settings

199Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• View configuration settings

Demonstration

Practice

Overview of configuration parameters
Configuration parameters with unit of measurement
Configuration parameters of the logical type
Configuration parameters
Services file

200Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Overview of configuration parameters
2. Configuration parameters with unit of measurement
3. Configuration parameters of the logical type
4. Configuration parameters
5. Services file

Practice

201Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Logical structure

4a

Database cluster

The definition of the concept "database cluster" in the documentation is given as follows.
A database cluster (union) or "cluster" for short is a set of databases that have common global SQL objects and

their common static and dynamic metadata. A database cluster is created by the initdb command line utility. A
SQL object is any object that can be created by the CREATE SQL command. Global SQL objects are roles,
tablespaces, replication sources, logical replication subscriptions, and databases. Local SQL objects are those
that are not global. Databases are a named set of local SQL objects.

The definition is neat, but seems unclear, if only because "general static" and especially "dynamic metadata" are
not given in the list of definitions.

If you have worked with Oracle Database, the PostgreSQL database analog is Pluggable Database (PDB). The
cluster analog is a multitenant container database. There is no root database (CDB Root) in PostgreSQL, you can
connect to any of the databases to manage the PostgreSQL cluster. The Oracle Seed PDB analog is the template0
or template1 database.

Let's consider the concept of "database" from another angle. An application needs to store data, it stores it in
the form of tables and other objects. To store it, the application creates connections to a storage location, which
can be called a database. A place where objects can be located (stored, located) together, with which it is
possible to work simultaneously (for example, connect tables in one selection), is a logical storage location for the
application - a "database".

To create a storage location, you need to run the initdb utility. This utility will create a set of files and directories
in the physical storage location - a directory whose path is specified in the initdb parameters. This directory is
called PGDATA. PGDATA stores a cluster of databases. In order for applications to be able to connect to any
database (there is no concept of connecting to a cluster, one connection, or session, connects to one database),
an "instance" must be running on the host (aka server or computer) - a set of server, background (auxiliary)
processes and the main postgres process (aka postmaster). Initially, three databases are created, later, after
starting the cluster, you can create a database in the cluster using the CREATE DATABASE command. You can
connect to any database in the cluster, the database will be created and will be equal among all other databases
in the cluster.

Oracle Database has a similar technology called Real Application Cluster (RAC) - a set of one or more instances
serving CDB or non-CDB. RAC is not an analogue of the PostgreSQL "database cluster" concept. In PostgreSQL,
one cluster serves one instance.

https://docs.tantorlabs.ru/tdb/en/17_5/se/glossary.html

202Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• A cluster is a set or association of databases.
• The cluster has common objects for all databases.
• The application connects to one database and has access to

its objects.
• The cluster is created using the initdb command line utility.
• The cluster is created in a physical storage location - a

directory designated "PGDATA" by the name of the
environment variable for utilities

• Databases in a cluster can be created and deleted.

Database cluster

Instance

An instance of a database cluster is a set of processes and the memory they use (shared and local for
each of these processes) through which applications connect (create sessions) to databases. Cluster
databases, since one instance serves exactly one cluster. In a cluster, you can create and delete
databases. An instance is the same as a single-instance Oracle Database instance.
Let's go into detail: an instance is one postgres process (postmaster), a set of server (servicing,

backend, foreground), auxiliary (background) processes that use shared memory to exchange data
with each other and achieve synergy by sharing memory structures that are located in a common
memory area. Several DBMS instances can operate on one server, if there is no conflict in the port
number, including in the Unix socket file name.
What is "port"? It is a number that is set in the port configuration parameter. By default, it is 5432. The

port is used in the Unix socket name (file) and as the TCP port number of network interfaces (IP
addresses) that are listed in the local_addresses parameter. The default value is localhost. * - all IPV4
and IPV6 addresses, '0.0.0.0' - all IPv4 addresses, '::' - all IPv6 addresses. But you can specify a list of
names and/or numeric IP addresses of nodes, separated by commas. An empty string means that the
instance can only be connected to via a Unix socket.
The postgres instance process listens on this port. In Oracle Database, this is done by non-instance

listener processes.
An instance implements all the functional capabilities of the DBMS through its processes: reads and

writes files, works with shared memory, provides ACID transaction properties, accepts connections
from client processes, checks access rights, performs recovery after a failure, performs replication,
and other tasks.
An application connects via a socket to its server process. Background processes are not connected

to applications and perform common useful work.
Note: The name postmaster is used to refer to the main process of the instance, since the word

PostgreSQL can refer to many things, such as the family of DBMSs to which Tantor Postgres belongs.
Tantor Postgres is a fork of the freely distributed PostgreSQL, as are other forks: Enterprise DB,
Postgres Pro Enterprise.

203Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• An instance is a set of processes and the memory they use
that serve a single database cluster.

• The database cluster is served by only one instance.
• The first and main process of an instance is called postgres

or postmaster
• A required instance parameter is the port on which the

postmaster listens for incoming TCP and local connections.
• By default, the port configuration parameter is set to 5432

Instance

Database

The application stores data in the DBMS and accesses it through a connection to the server process of
the instance. Within the connection (local via Unix socket or network TCP socket), a session is created.
Session, connection, session, connection are often (in the documentation somtimes) used as
synonyms, because it is important for the application to issue SQL commands and receive a result. The
differences between connections and sessions play a role when configuring load balancers (for
example, the pgBouncer application) and network settings. Connection is a physical concept, session is
a logical one.
Once a connection is created, the application must have access to all of its objects. For example, it

must be able to join selections from multiple tables and use its stored functions. Therefore, all (with a
few exceptions) storage objects that the application uses are local to the database, stored in it.
The connection is established only with one cluster database. Data stored in different cluster

databases is isolated from each other based on the fact that it is usually intended for use by different
applications, and applications should not intersect with each other, including from the point of view of
access control.
The idea of isolating applications using databases and combining application objects in one database

can be technically bypassed, since the needs of applications are different. For example, using
extensions (types fdw, dblink), an application in its session can work with data in several databases.
And several applications using schemas and roles can store tables with the same names in one
database without interfering with each other.

204Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• A database is a logical storage location for SQL objects.
• The database is part of a cluster
• The contents of the database can be dumped at the logical

level (as SQL commands) and loaded into another database
in the same or another cluster.

• The application creates a session with one database
• The session has access to objects of one database
• There is no access to objects of other cluster databases in

one session.

Database

List of databases

Initially, after creating a cluster, there are three databases named postgres, template0,
template1 . You cannot connect to the template0 database , it is not intended for making changes
to it. The list of databases can be obtained:
psql commands \l or \l+
command SELECT datname FROM pg_database;
or graphical utilities such as DBeaver, Tantor Platform.

205Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• To get a list, use the psql command:
\l or \l+

List of databases

postgres=# \l
List of databases

Name | Owner | Encoding | Locale Provider | Collate | Ctype |
-----------+----------+----------+-----------------+-------------+-------------+
postgres | postgres | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
template0 | postgres | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
template1 | postgres | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
testdb | postgres | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |

(4 rows)

postgres=# SELECT datname FROM pg_database;
datname

postgres
template1
template0
testdb

Creating a database

A database can be created by a role with the SUPERUSER or CREATEDB attribute :
CREATE DATABASE database_name parameter = value parameter = value;
The command has a wrapper utility createdb, it is convenient if you want to create databases from the

command line.
There are about 15 parameters in the command. You can pay attention to the following parameters:
OWNER can be used to specify the name of a role that will have privileges similar to a superuser within

this database.
To make a role owner, be a superuser or log into that role directly or indirectly. By default, the creator

becomes the owner of the database.
TEMPLATE - the name of the database whose contents you will copy. This is any database, not

necessarily having the IS_TEMPLATE property . By default, template1 is used. But if you want to
create a database with localization parameters different from those specified for template1, you need to
use template0 (unmodifiable empty database).
IS_TEMPATE can be changed after the database is created If IS_TEMPATE= true , this database can

be cloned by any user with the CREATEDB attribute ; otherwise (by default), only superusers and its
owner can clone this database. Also, a database with a template property cannot be deleted. To delete
it, you must first remove the template property.
The encoding and classification of characters are related to the collation type. To create a database

with an encoding different from the encoding with which the cluster was created, you may need to
specify four parameters:
create database database_name LC_COLLATE = 'ru_RU.iso88595'
LC_CTYPE='ru_RU.iso88595' ENCODING='ISO_8859_5' TEMPLATE= template0;
The collation types available for use can be viewed in the pg_collation table. The collation types
"C" and "POSIX" are compatible with all encodings. They should not be used, since the sorting order
of Cyrillic characters does not comply with linguistic rules.
The localization parameters available for use are determined at the time of cluster creation, are stored

in this table, and do not change after the cluster is created.
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createdatabase.html

206Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• CREATE DATABASE command or createdb utility
• two modes of database creation: WAL_LOG and FILE_COPY
• creating a database is cloning another database with all its

contents
• the database has an owner role (OWNER)
• the owner and name of the database can be changed after

its creation
• you can create a database with your own localization

parameters (encoding)
• encoding cannot be changed after the database has been

created
• the "template" database property (IS_TEMPLATE) affects the

ability to clone it by an unprivileged role and delete it

Creating a database

Changing database properties

STRATEGY - pay attention to this parameter if you are creating a database on an industrial cluster or
the database that you are using as a template (which you are cloning) is large. The parameter appeared
in version 14 of PostgreSQL and immediately by default began to use the new WAL_LOG strategy ,
which compiles a list of objects and the entire volume of the cloned database passes through the write-
ahead logs. The reason for the new strategy is that the previous FILE_COPY performed a checkpoint,
then copied directories (logging only copy commands), then a second checkpoint. If the template is
small, then the first checkpoint on an industrial cluster gives an increased load (the second is
insignificant). The reason is not only in the one-time and indirect increase in the recording volume (a
dirty block is written by a checkpoint but changes and the second one will be written less often, but it
could be written once if there was no checkpoint) the load on the input-output (storage system, disks),
but in the fact that after each checkpoint each changeable block is written to the journal in full (8 KB)
since by default the parameter full_page_writes=on (and it is unsafe to disable it). But if the size of
the template database is greater than the value of the max_wal_size parameter , then the
checkpoint will also be performed and can even be repeated if the size of the database is several times
greater than the value of the parameter.
If the template size is small, for example, less than 16MB (the WAL segment size) or several times

larger, then you can create a database. If it is larger, then you should choose a time when the cluster is
least loaded. If there are replicas, then evaluate the network throughput and, possibly, specify the
FILE_COPY strategy . If the template size is larger, for example, than half of max_wal_size , then
FILE_COPY is preferable.
You can give a description of the created database. Descriptions for almost any objects can be given

with the command:
comment on database db1 is 'Database for my purpose';
The description can be viewed using the command \l+
Descriptions do not affect functionality.
Database-level configuration settings (ALTER DATABASE) and database-level permissions (GRANT

) from the template database are not carried over to the clone.
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-alterdatabase.html

207Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The ALTER DATABASE name command can be used to
change some properties of an existing database.

• Some properties can be changed only if there is no session
to the database

• The ALTER DATBASE name SET command can be used to
change the configuration parameters of sessions created
with this database.

• At the database level, you can set about 190 configuration
parameters

• The database is a common object of the cluster and its
properties can be changed by connecting to any database in
the cluster.

Changing database properties

ALTER DATABASE command

You can change the properties of a database using the ALTER DATABASE command . Example:
alter database name is_template=true;
alter database name SET name=value; changes one of about 190 session parameters that can

be set at the database level.
CREATEDB attribute or the superuser can rename the database . You cannot rename the database you

are connected to; you must connect to any other database.
You can change the default tablespace, but no one must be connected to the database and all files

(except those in other tablespaces) and system catalog object files will be moved at the file system
level.
You can change the owner of the database.
You can set configuration parameters to customize the behavior of processes (both background and

session serving) that work with objects in this database.
Localization parameters can be selected when creating a database, after the database is created they

cannot be changed. The main ones are encoding and collation values (sorting rules), ctype
(character classification) which are related to the encoding value, localization provider. Some
localization parameters are session-specific and can be changed using the ALTER DATABASE SET
command .
Database creation and tablespace alteration are non-transactional (cannot be performed within a

transaction). Knowing whether commands are transactional is useful, for example, when installing or
developing extensions. Non-transactional commands cannot be executed when installing an extension
to a database.

208Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The command syntax shows which properties can be
changed:

• ALTER DATABASE database_name
ALLOW_CONNECTIONS true|false
CONNECTION LIMIT -1/number
IS_TEMPLATE true|false
RENAME TO new
OWNER TO new
SET TABLESPACE new
REFRESH COLLATION VERSION
SET parameter=value

ALTER DATABASE command

Deleting a database

If the contents of the database are not needed, the database can be deleted.
When deleting, local objects in other databases are not affected. The delete command is:
DROP DATABASE [IF EXISTS] name;
Optional keywords in square brackets.
IF EXISTS is present in many commands and allows not to generate an error (severity level ERROR)

if the object does not exist, but usually reports (severity level NOTICE) that such an object does not
exist. Severity levels affect how the message is processed: issued to the client, transferred to the
cluster message log.
Next command:
DROP DATABASE name (FORCE) ;
allows you to detach sessions that are connected to this database, interrupt their transactions and

delete the database.
A database with the IS_TEMPLATE property can be dropped by removing the template property.
There is no need to delete the template0 database .

209Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Performed by the DROP DATABASE command or the dropdb
wrapper utility

• To execute the command, you need to connect to any cluster
database other than the one being deleted.

• The database is deleted with all its contents.
• The command is non-transactional - it cannot be rolled back.
• Files that store database object data are physically deleted

Deleting a database

Schemas in the database

A synonym for schema is namespace.
Schemes are used to organize the storage of database objects. Analogy: files in the file system can be

located in different directories. Similarly, tables, views, subroutines can be located in different schemes
of the same database.
A schema is a local database object, i.e. each database in the cluster has its own set of schemas.

Schemas with the same names (identifiers) may exist in different databases.
Schemas allow you to have multiple tables and other types of objects with the same name in the same

database.
Schemes allow you to combine subroutines (procedures and functions) that are logically related to

each other.
Most objects that applications work with must belong to a single schema. Such objects cannot exist

without a schema. Before deleting a schema, you will need to reassign objects to another schema. An
object cannot be in more than one schema at a time. There are no symbolic or hard links, as in the file
system.
When referring to such objects, you can specify a scheme and a dot symbol before the object name.

For example:
SELECT schema.function() ; or SELECT * FROM schema.table;
Oracle Database has package and package body objects. PostgreSQL does not have such objects.

Schemas can be used to provide the main functionality of packages - the ability to combine logically
similar subroutines into modules (packages). Using extensions that implement packages by adding
create package commands leads to the creation of non-portable (to other PostgreSQL family DBMS)
code.
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-schemas.html

210Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• schema synonym - namespace
• are used to organize the storage of database objects
• Schema is a local database object.
• Schemas allow you to have multiple tables and other types of

objects with the same name in the same database.
• An object cannot be in multiple schemas.
• Schemes can be used for logic of combining (packaging)

subroutines
• There are no "package" objects in PostgreSQL

Schemas in the database

Creating and modifying schemes

Schemas are not associated with roles. The owner name of an object and the schema name (in which
the object resides) can be different and can be changed after the object is created.
Schemes have an owner. When creating a scheme, you can set it:
CREATE SCHEMA schema_name AUTHORIZATION owner;
and later change:
ALTER SCHEMA schema_name OWNER TO role;
You can rename the schema, but you should remember about the search path, the value of which will

probably need to reflect the new schema name.
In Oracle Database, schemas and users are linked to each other, which limits flexibility. Oracle

Database has "synonym" objects for this reason, PostgreSQL does not have "synonym" objects
because they are not needed.
You can grant CREATE and/or USAGE privileges to roles on schemas. This allows you to control the

"visibility" of objects in a schema as a whole. Analogy: a file system may have a privilege to access a
file, but if there is no privilege to the directory in which the file is located, then there will be no access to
the file.
Schemes can be deleted:
DROP SCHEMA [IF EXISTS] name [CASCADE] ;
If there are objects in the scheme, the scheme will not be deleted by default. If the objects are needed,

they should be moved to another scheme. If the objects are not needed, they can be deleted together
with the scheme using the CASCADE option .

211Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Schemes are not associated with roles, but have an owner.
• When creating a schema, you can assign an owner role:
CREATE SCHEMA schema_name AUTHORIZATION owner;

• You can change the owner:
ALTER SCHEMA schema_name OWNER TO role;

• You can rename the scheme:
ALTER SCHEMA schema_name RENAME TO name;

• You can grant CREATE and USAGE privileges to roles on
schemas.

Creating and modifying schemes

Path for searching objects in schemes

Associated with schema objects is the concept of a search path and the corresponding configuration
parameter search_path . This parameter is set at the cluster level and has a default value of
"$user", public
$user - the name of the role in which the session is currently running is substituted.
This parameter can be set at any level and changed by any role.
There is an analogue in file systems - the PATH environment variable.
The search path can specify several schemes in which the object will be searched, if the scheme

name is not explicitly specified before the object name. The object is searched in the order of the
schemes listed in the search path. If the scheme does not exist or there are no rights to it, then the
search is performed in the following schemes in order and no errors are returned. The search algorithm
is similar to searching for files in the file system.
The template databases have a schema named public, so when creating any databases, a schema

named public will exist. The public schema is specified in the search path: "$user", public
The logic for using the search path is usually chosen in advance and the value of the search_path
parameter at the cluster or database level is not subsequently changed, because changing the search
path may result in objects no longer being found in routines.
The default value allows you to create schemas with the same name as the role names, which is

convenient. It should be remembered that a schema is a local object, and a role is common to the entire
cluster. If a role has the right to connect to several databases in a cluster, then in each of them you can
create a schema with the same name.

212Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• specifies a list of schemas in which to search for an object
• search_path parameter , which can be changed at any

level
• default value "$user", public

Path for searching objects in schemes

Special schemes

PostgreSQL has utility schemas:
pg_catalog - this schema contains "system catalog" objects - service tables, views, functions and

other objects
information_schema - a schema described in the SQL standard. Contains tables with standardized

names and column titles. The developers of the standard believed that DBMS manufacturers would
create this schema and tables, which would allow developers to obtain data with the same SELECT
command when working with DBMS from different manufacturers. This idea was not widely used, since
information from standardized tables is not in great demand during development, and also because the
specifications of JDBC access interfaces contain methods that allow much more useful information
about the DBMS and objects in it to be obtained in a standard way, regardless of the DBMS used.
There are schemas for specific types of tables, which are defined based on the principle that tables

must have a schema (tables must be located in some schema):
pg_toast is a schema for special TOAST tables, which are used to store large fields. These tables

are hidden so that they do not create "information noise". For this purpose, TOAST tables (and their
indexes) are created in this service schema. You can know about this schema in case its name is
encountered somewhere. Working with TOAST is fully automated and there are no separate commands
for working with TOAST objects and the schema. To change the properties related to TOAST, the
options of the CREATE TABLE and ALTER TABLE commands for ordinary tables are used.
pg_toast_temp (reference to pg_toast_tempN where N is a number) - schema for temporary

TOAST tables (and indexes) to temporary tables. Exists no longer than the session lifetime.
pg_temp (reference to pg_tempN where N is a number) - schema for temporary tables. Temporary

tables, indexes, views (their definitions and data) exist either until the end of the transaction or until the
end of the session. Implicitly present at the beginning of the search path.
It makes practical sense to know about the pg_catalog schema . The name of this schema can be

used in psql commands to find service tables, views, and functions.
Knowledge of temporary objects is necessary for developers and administrators if they are faced with

a large number of temporary object files. Using the Tantor SE1C assembly allows you to reduce
problems when working with a large number of temporary objects.

213Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_catalog - this schema contains the "system catalog"
objects

• information_schema - schema described in the SQL standard
• pg_toast - schema for TOAST special tables
• pg_temp (reference to pg_tempN where N is a number) -

schema for temporary tables
• pg_toast_temp (reference to pg_toast_tempN where N is a

number) - schema for temporary TOAST tables to temporary
tables

Special schemes

Determining the current search path

The current search path can be obtained:
psql command SHOW search_path; returns the search path set for this location as a string. Comma-

separated.
current_schemas(false) function - returns the search path currently in effect in this location as an

array. However, unlike search_path , it does not return non-existent schemes, only specific names of
existing schemes. The function is convenient to use in stored routines.
current_schemas(true) - adds service schemas, namely pg_catalog and pg_temp_N (if it was

automatically created in the session) if it is implicitly present in the search path. Schemas for TOAST
are not given, this is by design. This variant of the function is used to determine whether the object
name will be searched first in the system catalog schema. For example, a function or table whose name
begins with " pg_ " (this is how the names of all system catalog objects begin) is searched, user
objects according to the convention (code conventions) which application developers usually adhere to
should not have names starting with " pg_ ". It is possible to change the search path so that
pg_catalog is not the first in the list, but this does not make sense and is not practiced.
current_schema or current_schema() function . In PostgreSQL, parentheses " () " are required

after the name of a function without arguments. However, for some functions described in the SQL
standard to which this function belongs, they are not required, because parentheses are optional in the
SQL standard. This function returns a single name of the first schema in the search path (search_path
) or NULL if the search path is empty. User objects will be created in this schema unless the schema
name is explicitly specified in the create command. If the function returns NULL , the object will not be
created without specifying a schema.

214Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• psql command SHOW search_path;
› returns the search path set for this location

• function current_schemas(false)
› returns the search path currently in effect at that location as an

array
• function current_schemas(true)

› adds utility schemas, namely pg_catalog and pg_temp_N
• current_schema function or current_schema()

› returns a single name of the first schema in the search path, or
NULL if the search path is empty

Determining the current search path

In which scheme will the object be created?

To determine the schema in which the object will be created, the search path that is valid at the given
location of the command execution is used. The name of this schema for ordinary objects is given by
the current_schema() function . However, if the object is "unusual" (temporary), then the
schemas that can contain objects of this specific type are used. This applies to temporary tables,
indexes on temporary tables, temporary views, TOAST tables to temporary tables. In this case, if the
schema is missing, it will be created (or assigned from previously created ones and not used by other
sessions) - it will be assigned a number and it will be used as a suffix in the schema name. In this case,
the name of such a service schema will implicitly exist in the search path. Accordingly, such objects will
be implicitly searched for and there is no need to prefix their names with the name of the service
schema.
Thus, creating a temporary table results in adding rows to the system catalog tables. With massive

generation of temporary objects, the system catalog tables and indexes, as well as the file system, can
become a bottleneck. After the session ends, the temporary schema objects are deleted, and the
schema itself is left for reuse by other sessions, so as not to cause frequent deletion of rows in the
pg_namespace system catalog table .
If you need to explicitly specify a place in the search path for service schemas, you can specify the

names pg_catalog and pg_temp in the desired order among the regular schemas. This order will be
used. However, it is better not to allow overlapping object names and make the names unique, so that
you do not have to resort to changing the search path.

215Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the name of this schema for regular objects is given by the
current_schema() function

• temporary objects are created in service schemas
• Service schemas for temporary objects are created

automatically

In which scheme will the object be created?

Search path in SECURITY DEFINER routines

In routines with the SECURITY DEFINER property , there is a peculiarity with the search path. For
example, with the substitution variable $user . In the body of routines (procedures and functions), the
owner's rights (DEFINER) are used. The user function in such routines returns the owner's name. In
the search path with the substitution variable, the owner's name will be. Since $user is present in the
default value, usually the creator of such a routine tests the routine with this search_path value .
search_path in his session or transaction before calling the subroutine , then this is the

value that will be in effect in the body of the subroutine. The visibility of objects may change.
To avoid dependence on such a change of the search_path parameter , it can be set forcibly in

the subroutine properties:
CREATE FUNCTION name(parameters)
RETURNS type
LANGUAGE language
SET search_path TO 'value'
SECURITY {DEFINER | INVOKER}
AS
BEGIN
END;
If you put SET inside the BEGIN and END block , there will be no error, but the behavior will be

different - the set value will remain after exiting the subroutine, and if a transaction is rolled back (even
implicitly if there is an EXCEPTION section in the subroutine), the change in the parameter
value will be canceled. This creates ambiguity and generates difficult to detect errors.
At the level of any (INVOKER and DEFINER) subroutine, you can set a value for a configuration

parameter that allows changing the value at the session level (user, superuser context).
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createfunction.html

216Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• when using $user in the search path, the name of the
subroutine owner will be substituted in the body of the
subroutine

• before calling such a subroutine, the caller can change the
value in the search path and remove $user, in this case the
value set by the caller will be used in the body of the
subroutine and the subroutine can start working with other
objects

• At any (INVOKER and DEFINER) routine level, you can set
values for configuration parameters that can be changed at
the session level.

Search path in SECURITY DEFINER routines

Masking schema objects

The documentation says: " For security, search_path should be configured to exclude any schemas
that are writable by untrusted users. This prevents malicious users from creating objects (such as
tables, functions, and operators) that could mask objects intended for use by the function. Particularly
important in this regard is the temporary schema, which is searched first by default and is usually
writable by anyone. A safe location can be achieved by forcing the temporary schema to be searched
last. To do this, write pg_temp as the last element in search_path . "
In other words, for a routine with the DEFINER tag to be safe, search_path must:
1) be set at the subroutine definition level
2) exclude any schemes that can be created or modified by users with a lower level of privilege than

the owner of such a routine
3) The pg_temp schema must be specified explicitly at the end of the search path.
Also, you should know that by default, after creating a subroutine, the PUBLIC role gets the right to

execute the subroutine. This behavior can be changed using default privileges .
System catalog objects, including functions, can be masked by explicitly specifying the pg_catalog
schema in the search path after the schema with the masking object. For example: SET search_path
= public, pg_catalog;
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createfunction.html

217Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• If commands do not use a schema
name before the object name,
adding a schema to the search
path that has an object with the
same name masks the original
object.

• By default, the temporary schema,
the system catalog schema are
implicitly present at the beginning
of the search path and creating a
temporary object masks any table,
view, sequence

Masking schema objects

System catalog

The system catalog contains tables, views, functions, indexes (on a column named oid that is in
every table of the system catalog), and other objects that are used to store metadata (data about data)
and for service purposes. When a table or other object is created, rows are inserted into the system
catalog tables and files are created in the file system to store the table rows. The system catalog tables
implicitly use cluster processes at the stage of executing SQL commands, for example, to check for the
existence of tables, the presence of privileges, and the names of files in which to search for rows.
For example, the command to create a database, in addition to a large number of actions, inserts a row

into the pg_database table .
System catalog objects are located in the pg_catalog schema .
In Oracle Database, the equivalent of a system catalog is called a "data dictionary."
Object names are converted to lower case and stored in lower case (unless double quotes were used

when specifying names).
System catalog objects (except global ones) are always located in the default tablespace for the

database.
https://docs.tantorlabs.ru/tdb/en/17_5/se/catalogs.html

218Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The system catalog is tables, views, functions, indexes and
other objects that are used to store metadata.

• System catalog objects are located in the pg_catalog
schema.

• System catalog objects (except global ones) are always
located in the default tablespace for the database.

• object names are converted to lower case
• System catalog tables implicitly use cluster processes during

SQL command execution

System catalog

Common Cluster Objects

The cluster also has global objects, information about them is stored in several tables (global cluster
objects), which are located in the pg_global tablespace . These tables are visible in the same way
in sessions connected to any database in the cluster. Global objects include 11 tables and 21 indexes on
their columns, 9 TOAST tables and 9 indexes on TOAST tables. A total of 50 objects.
Common cluster objects:

1)databases - table pg_database
2)roles - pg_authid, pg_auth_members
3)tablespaces pg_tablespace
4)pg_subscription logical replication subscriptions
5)logical replication sources - pg_replication_origin, pg_shseclabel, pg_shdepend,
pg_shdescription
The global catalog also stores privileges to change the values of the pg_parameter_acl
parameters and the configuration parameters of roles in sessions with specific databases
pg_db_role_setting .
Roles, tablespaces, replication sources, logical replication subscriptions, and databases themselves

are not local SQL objects because they exist outside of any single database; they are called global
objects. The names of such objects must be unique across the entire database cluster.

219Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• These are objects (tables and auxiliary objects) of the system
catalog that store data about common objects of the cluster

• pg_global tablespace
• Common cluster objects:
• databases
• roles
• tablespaces
• logical replication subscriptions
• logical replication sources

Common Cluster Objects

Using the system catalog

Changes to system catalog tables are made during the execution of DDL commands. System catalog
tables are not locked against changes. It is not advisable to make changes to system catalog tables
directly using SQL commands unless this is documented. It is possible to select data from system
catalog tables directly using SELECT and WITH commands and it is used in application code and in
cluster administration. However, the structure of system catalog tables is not very convenient for
human reading. The structure was created many years ago, when the sizes of storage systems were
small, as was the memory on computers. For convenience of working with the system catalog, there
are views that are convenient to use.
You can get a list of system catalog views using the psql \dv S command.
S suffix at the end of psql commands allows you to list the contents of the system catalog, which is

not normally listed by default.
It is more practical to work with the system catalog using psql commands. The \? command gives a

list of all psql commands. It will also give help on the \? command itself :
Reference
\? [commands] help on psql commands (i.e. those starting with \)
\? options help on command line options of the psql utility
\? variables help on variables that change psql behavior
\h [NAME] help on SQL command; * - on all commands
Knowing the PostgreSQL architecture, concepts, terms, you can easily obtain information using psql

commands.

220Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• information can be retrieved from system catalog tables and
views using SELECT, WITH, psql commands (start with \),
graphical applications, and the Tantor Platform

• \? psql command help
• It is not advisable to make changes to the system catalog tables

unless this is described in the documentation.
• Knowing the PostgreSQL architecture, concepts, terms, you can

easily get information using psql commands

Using the system catalog

Accessing the system directory

You can access tables and views of the system catalog with the SELECT command. The names of
tables and views can be obtained with the psql command \dtvS pg_*term*
By the name of the table or view, understand which table or view contains the necessary information.

Then use the \d name command to get the column names. The first three characters in the name of
the system catalog table columns traditionally contain a letter combination similar to the name of the
table where this column was created. For example, in pg_ name sp ace the prefix is " nsp ".
Starting with the fourth character , there is usually an English word or its understandable
abbreviation.
If comments have been created for a table or columns, you can view them by adding " + " to the

command \d+ object_name . Unfortunately, descriptions for system catalog tables are not specified.
Descriptions can be found in the documentation.
In the system catalog tables, the first column is called oid and its type is oid. Let's look at the type

description using the \dT oid command.
List of data types
Scheme | Name | Description
------------+-----+---
pg_catalog | oid | object identifier(oid), maximum 4 billion
(1 строка)
This type has a description stating that the maximum number of values is 4 billion. This means that the

system catalog table can have no more than 4 billion rows. This means that if there is a table for storing
types (pg_class), then there can be no more than 4 billion types in one database. Also, no more than
4 billion relations in one database. An index has been created on the oid column of the system catalog
tables, and the column itself is the primary key. If the number of rows in the system catalog table
reaches 4 billion, the instance and its processes will continue to work. Values are entered into the oid
column by auto-increment. Upon reaching 4 billion, server processes servicing commands that need
to insert a new row into any system catalog table will search for an unused value (these can
accumulate; oid values are released after deleting an object) in the oid column, which will slow down
the execution of commands. You should not create billions of objects and then delete billions of them. It
is also important to remember that vacuuming and freezing also works for system catalog tables.

221Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Executed by SELECT and WITH commands
• you can join tables and views
• column named oid is the primary key
• the oid column is used for relationships between

tables
• The maximum number of rows in the system catalog

tables is 4 billion
• the first three characters in the column names are the

abbreviated table name

Accessing the system directory

reg-types

To get data from the system catalog tables, you may need to join several tables. The rows of the
system catalog tables are linked via the oid column, that is, a number. In PostgreSQL, you can create
data types (CREATE TYPE) and cast types (CREATE CAST). This is also used by PostgreSQL
developers. 11 data types and type casts were created that allow you to easily convert the oid (number)
in a column of one of the 11 system catalog tables to the name of an object in this table and back. These
types are called reg types. Using reg types and type casts allows you to write queries to the system
catalog tables without using joins (JOIN), thereby simplifying the selection command. psql, when
servicing its commands starting with "\", forms a SELECT command to the system catalog tables and
sometimes uses type casts. Such SELECT can be viewed by setting the \pset ECHO_HIDDEN on
variable
The list of reg types can be viewed using the command \dT reg*
List of data types

Scheme | Name | Description
------------+---------------+---------------------------------------
pg_catalog | regclass | registered class
pg_catalog | regcollation | registered collation
pg_catalog | regconfig | registered text search configuration
pg_catalog | regdictionary | registered text search dictionary
pg_catalog | regnamespace | registered namespace
pg_catalog | regoper | registered operator
pg_catalog | regoperator | registered operator (with args)
pg_catalog | regproc | registered procedure
pg_catalog | regprocedure | registered procedure (with args)
pg_catalog | regrole | registered role
pg_catalog | regtype | registered type
(11 lines)
Example: SELECT relname, reltoastrelid::regclass FROM pg_class WHERE
reltoastrelid>0 AND relnamespace='pg_catalog'::text::regnamespace order by 1; will
return the TOAST table names of the 36 system catalog tables that have them.

222Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• created for 11 tables of the system catalog
• are used to cast a text object name to an oid type value and

back
• make it easier to write queries to system catalog tables by

reducing the number of table joins
• Example: find the name of the TOAST table created for the

pg_tablespace table:
SELECT reltoastrelid, reltoastrelid::regclass

FROM pg_class where relname='pg_tablespace';
reltoastrelid | reltoastrelid

---------------+------------------------
4185 | pg_toast.pg_toast_1213

reg-types

Frequently used psql commands

\ l - list (l ist) of databases
\d u or \d g - list of roles (u ser, g roup) of the cluster, \drg - assignments of roles to roles
\dn - list of database schemes (namespace)
\db - list of tablespaces
\d config *name* - list of cluster configuration parameters (config)
\ddp - a list of default privileges . This is a special type of privilege or revokable privilege specific to

PostgreSQL.
\d f S pg* - a list of system functions and procedures useful for administration. Some information

about instance and cluster operation can only be obtained using functions. Some service views use
functions. Procedures were introduced to PostgreSQL later than functions, so "f" is used for
procedures as well.
\d vS pg* - useful system (S ystem) representations (view)
\d x - list of installed extensions (extention)
\dy - list of triggers for events that are usually created by extensions or administrators
When entering a command in psql, remember that you can press the tab key on your keyboard twice

and psql will display a list of possible values that you can enter next:
postgres=# \
Display all 108 possibilities? (y or n)
List of useful functions for the administrator:
https://docs.tantorlabs.ru/tdb/en/17_5/se/functions-admin .html

223Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• \l - list of databases
• \du \dg - list of cluster roles
• \dn - list of database schemes
• \db - list of tablespaces
• \dconfig *name* - list of configuration parameters
• \dfS pg* - a list of system functions and procedures useful for

administration. Some information about the operation of an
instance and cluster can only be obtained using functions. Some
service views use functions

• \dvS pg* - useful utility representations
• + symbol at the end of the command shows more information

example: \db+ will show the size and privileges

Frequently used psql commands

Database Inspector in Tantor Platform

The Platform Inspector displays information about the database contents - the number and
administration-relevant characteristics of SQL objects. It also analyzes and provides recommendations
on the characteristics of objects that may be a problem.

224Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Database Inspector in Tantor Platform

Demonstration

Viewing a list of cluster databases
Creating a database
Renaming a database
Database connection limit
formatting psql output

225Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Viewing a list of cluster databases
• Creating a database
• Renaming a database
• Database connection limit
• formatting psql output

Demonstration

Practice

Setting configuration parameters at different levels
Setting the search path in functions and procedures

226Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Setting configuration parameters at different levels
2. Setting the search path in functions and procedures

Practice

227Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Physical structure

4b

PGDATA Cluster File Directory

The database cluster files are stored in a directory called PGDATA , named after an operating system
environment variable that is usually set to avoid specifying the directory to the cluster management
utilities each time the utilities are called. The parameter (key) for the utilities is called "-D directory" or "
--pgdata directory". If you specify a parameter for the utility, it will override the value of the
environment variable. Some utilities (pg_resetwal) require this parameter to be specified explicitly to
avoid accidentally starting with an incorrectly set environment variable.
A cluster can store data files outside the PGDATA directory using "tablespaces," which we'll look at

later in this chapter.
By default, the Tantor Postgres installer creates a directory
/var/lib/postgresql/tantor- se - 16 /data

for storing cluster files and services file
/usr/lib/systemd/system/tantor-se-server-16.service ,
where specifies the path to this directory. The --edition and --major-version parameters can be used

to set other values for the installer. The rest of the Tantor Postgres utilities and software do not have
default values, since several peer clusters can exist on the host. Each cluster has its own PGDATA
directory . Each cluster is served by a single instance.
By default, the operating system cache is used when working with cluster files. The debug_io_direct

developer configuration parameter allows you to set up work with data and log (WAL) files in direct i/o
mode. This mode does not provide any practical advantages in performance or fault tolerance for
PostgreSQL. This mode should not be used for working with data files.
PostgreSQL does not duplicate (does not multiplex) cluster files. Fault tolerance of working with files

should be provided at lower levels - file system, hardware.
PostgreSQL uses the symbolic and hard links functionality of file systems. When administering PGDATA

, you can use mount points, symbolic links, and hard links.
https://docs.tantorlabs.ru/tdb/en/17_5/se/storage-file-layout.html

228Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The cluster stores its files in the file system.
• The cluster directory is called PGDATA
• A directory or its subdirectories can be mount points, hard

links, or symbolic links.
• Block devices and unformatted hard disk partitions are not

used.
• By default, the operating system cache is used when working

with cluster files.

PGDATA Cluster File Directory

PGDATA Cluster File Directory

PGDATA directory contains subdirectories with predefined names.
By default, the root of the PGDATA directory contains the cluster parameter text files:
postgresql.conf, pg_hba.conf and pg_ident.conf , although they can be located in other
directories. The parameter file postgresql.auto.conf is located only in the root of PGDATA .
current_logfiles - a text file with the name of the current file to which the message collector

writes the server message log. The message collector is enabled by the logging_collector
configuration parameter (ALTER SYSTEM SET logging_collector = on;) Measuring the
parameter requires restarting the instance. Using the message collector is recommended for industrial
use or when there is a large volume of data written to the message log.
postmaster.opts - contains the command line options with which the instance was started
PG_VERSION - contains the major release number
postmaster.pid - a "lock" file traditionally used in Linux. Contains the number (PID) of the main

process of the instance; path to PGDATA , instance startup timestamp, instance port number, path to
the Unix socket directory, IP address at which the instance is accessible, shared memory segment
identifier (SHM). The segment size is small (56 bytes). Shared memory uses the mmap type by default.
The type can be changed using the shared_memory_type parameter , but this is not necessary.
Main subdirectories:
base and global are directories of two tablespaces, they store data of cluster objects
pg_stat and pg_stat_tmp directories of collected statistics. Active recording goes to the
pg_stat_tmp directory , it is not worth placing it on the SSD (large recording volume), perhaps it is
worth placing it in memory (in-memory file system).
pg_tblspc - contains symbolic links to tablespace directories. It is convenient to see which cluster

directories are located outside PGDATA .
pg_wal - contains files ("segments") of the write ahead log (WAL). Loss of WAL files leads to the

impossibility of starting the cluster
The log directory is created manually for the message log, the rest of the directories
https://docs.tantorlabs.ru/tdb/en/17_5/se/kernel-resources.html

229Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• contains parameter files
• subdirectories

PGDATA Cluster File Directory

Temporary objects

The limit on the size of temporary files used by one process can be set by the temp_file_limit
parameter . By default, there is no limit. The size of temporary files used by each process in the
instance is limited. This parameter also limits the total number of temporary table files. If the limit is
exceeded, the command executed by the process will be interrupted.
Temporary tables may be heavily used by applications.
When a temporary object is created, rows are created in the system catalog tables, and these are

permanent storage objects. Regular files are also created in the file system. One transaction and one
process work with a temporary table. Parallel processes cannot work with a temporary table; only the
server process works with it.
If a temporary table is frequently cleared with the TRUNCATE command , this command (if you do not

use extensions and assemblies that improve work with temporary tables) creates a new file in the file
system with a new name and updates the relfilenode field in the pg_class table . The system
catalog table file may grow in size and autovacuum may work more often. Statistics on temporary
tables are also stored in permanent storage objects. Frequent creation of temporary tables with a large
number of columns generates many rows in the system catalog tables. The system catalog tables can
grow to tens of gigabytes.
Tantor Postgres has optimizations for working with temporary tables. The optimizations are enabled

by the enable_delayed_temp_file and enable_temp_memory_catalog configuration parameters
When the enable_temp_memory_catalog parameter is enabled , no changes are made to the system

catalog tables when temporary objects are created, deleted, or modified.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-client.html#GUC-TEMP-TABLESPACES

230Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are created in tablespace directories
• tablespaces for temporary files are specified by the
temp_tablespaces parameter

• It is recommended to create a separate tablespace for
temporary files

• temporary files are created if the data being processed does
not fit into the process memory

• temporary files are created for temporary tables and their
indexes when executing SQL commands that process large
amounts of data (e.g. sorting, index creation)

Temporary objects

Tablespaces

Tablespaces are designed to allow a cluster to span multiple storage devices. The storage devices are
mounted in different directories. A tablespace is a shared cluster object that represents a reference to a
directory.
You can use the tablespace name in object creation commands, and the object files will be

automatically created in subdirectories of that directory. You can grant USAGE privileges to roles on
tablespaces. A tablespace has an owner. A tablespace is not part of a database or a schema, it is part
of a cluster.
The reasons for creating tablespaces are as follows. The operating system may have file system

mount points with different characteristics: space size, automatic space addition, performance, fault
tolerance. The administrator can distribute database objects across these mount points (directories).
You can move objects between tablespaces, which will issue commands to the operating system to

create, delete, and copy file contents block by block.
A tablespace that does not contain objects from any cluster database can be dropped.

231Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are designed to allow a cluster to be located on multiple
storage devices

• physically it is a directory in the file system
• are common objects of the cluster
• can store files of several cluster databases

Tablespaces

Tablespaces: Characteristics

After creation, the cluster has two tablespaces corresponding to the base and global
subdirectories of the PGDATA directory :
postgres=# \db
List of tablespaces
Name | Owner | Location
------------+----------+--------------
pg_default | postgres |
pg_global | postgres |

pg_default tablespace is used by default for the template1, template0, postgres databases .
pg_global tablespace is used to store global system catalog tables and should not be used to store

user objects. This tablespace stores the pg_tablespace table files .
https://docs.tantorlabs.ru/tdb/en/17_5/se/manage-ag-tablespaces.html

232Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Subdirectories are created automatically
• pg_global and pg_default tablespaces are created .
• List tablespaces:

\db command and pg_tablespace table
• the contents of the list are the same in all databases of the

cluster
• pg_tablespace - global system catalog table

Tablespaces: Characteristics

Tablespaces: Characteristics

Tablespaces are part of a database cluster. Even if they are not in PGDATA, they cannot be
considered a stand-alone set of data files. The information about which objects are in which files is
stored in the system catalog, not in the tablespace.
Tablespaces cannot be "detached" and "attached" to another database cluster. They cannot be

backed up individually.
If a tablespace is damaged (file deleted, disk failure) and the instance is abnormally stopped, the

instance will not start because it will need to restore the missing file blocks from the WAL log. The
cluster will become completely unavailable. Therefore, you cannot place tablespaces with persistent
storage objects on a file system that is not crash-tolerant (in RAM).
It is possible to place tablespaces only with temporary objects (temporary tables) if you are absolutely

sure that there are no permanent storage objects in them on the file system in memory. In this case, you
need to consider whether there is enough space for temporary tables. If the space runs out, the
command to insert a row into a temporary table will return an error, the temporary table file will not be
deleted. Only the table delete command can delete the file and free up space. The table truncation
command may return an error, since it first creates a new file, and there may not be space for it.
An instance operates on the tablespace directory and its contents with the privileges of the user under

which the instance processes are launched. When creating a tablespace at the file system level, the
directory must be granted read-write privileges to the operating system user postgres.

233Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Without a cluster they don't exist
• Cannot move between clusters
• Cannot be backed up separately from the cluster
• Are not objects of schemes
• Have an owner role
• Tablespace directory:
• created manually in the operating system
• must be located in power loss tolerant file systems
• It is recommended to create outside of PGDATA
• You should not delete files in the directory manually, they are

deleted automatically by SQL commands

Tablespaces: Characteristics

Tablespace Management Commands

The database has a property called the default tablespace. It is where the system catalog object files
are physically located. You can change the default tablespace, which will move the contents of the
system catalog files to the new files.
Create tablespace command:
CREATE TABLESPACE name [OWNER role] LOCATION 'directory'
[WITH (parameter = value [, ...])]
Place the tablespace directory outside PGDATA .
The command to change the default tablespace for a specific database is:
ALTER DATABASE database SET TABLESPACE name;
Renaming a tablespace:
ALTER TABLESPACE name RENAME TO name;
Change of owner:
ALTER TABLESPACE name OWNER TO role;
Deleting a tablespace (the directory on disk is not deleted):
DROP TABLESPACE [IF EXISTS] name;
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createtablespace.html

234Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Create command:
CREATE TABLESPACE name [OWNER role] LOCATION
'directory'
[WITH (parameter = value [, ...])]

• Change owner:
ALTER TABLESPACE name OWNER TO role;

• Renaming:
ALTER TABLESPACE name RENAME TO name;

• The database has a "default" tablespace, which contains the
database's system catalog object files.

• The command to change the default tablespace for a database is:
ALTER DATABASE database SET TABLESPACE name;

Tablespace Management Commands

Changing tablespace directory

command to change the directory (LOCATION property) of a tablespace, since the tablespace may
contain local object files of several databases in the cluster, and the session in which the command is
issued should not see local objects of other databases. However, you can change the directory using
the following procedure:
1)In the directory PGDATA/pg_tblspc there is a symbolic link whose name is the oid (number) of the
tablespace. The link points to the directory of the tablespace:
ls -al | grep number
number -> /u01/postgres/my_tblspc
2)Make sure the oid value matches the name of the tablespace you want to move:
SELECT oid , spcname FROM pg_tablespace;
3)Stop the instance:
pg_ctl stop
4)Make sure the instance is stopped:
pg_controldata | grep down
Database cluster state: shut down
5)Move the tablespace directory to the desired location using an operating system or storage system
command. You can move the directory within the same file system (mount point), or to any other:
mv /u01/postgres/my_tblspc /u02/postgres
6)Make sure that the user running the instance (postgres) has filesystem-level permissions to read and
write to the directory and its contents.
7)Update symbolic link PGDATA/pg_tblspc/ number , which points to the tablespace directory:
ln -fs /u02/postgres/my_tblspc $ PGDATA/pg_tblspc/ number
8)Start the instance: systemctl start tantor-se-server-16
9)Check that the location has changed. For example, with the command psql \db

235Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The cluster defines the tablespace directory by a symbolic
link in the PGDATA/pg_tblspc directory.

• Replacement procedure:
› Find the name of the symbolic link in the PGDATA/pg_tblspc

directory that points to the tablespace directory.
› Stop the instance
› Move tablespace directory
› Update the symbolic link
› Run the instance

Changing tablespace directory

Tablespace Parameters

The current version of PostgreSQL has four parameters: seq_page_cost, random_page_cost,
effective_io_concurrency, maintenance_io_concurrency, which can be set at the tablespace level. Setting these
values affects the creation of command execution plans. The parameters are weights that are used by the
planner to determine the cost of the execution plan. The parameters affect the planner's assessment of which
resource is "more expensive" - the disk subsystem or the computing power of the processors. This can be useful
if the tablespace is located on a storage system that is faster or slower than the storage system whose
parameters are set in the cluster configuration files. Cluster configuration parameters with the same names:
seq_page_cost (float) - the cost of reading a block from disk when reading blocks sequentially. Files that

store object data are divided into blocks. Sequential reading is considered if the block logically comes next - by
offset from the beginning of the file. The instance does not know about the physical location of blocks in hard
drive sectors. Default is 1.0
random_page_cost (float) - the cost of reading a block from disk with random access to file blocks. By

default, 4.0 For SSDs, sequential and random access do not differ in speed, i.e. random_page_cost can be set
equal to seq_page_cost. Decreasing random_page_cost relative to seq_page_cost inclines the scheduler to use
the "Index Scan" access method instead of the "Seq Scan" access method. Simultaneously changing the values
of both parameters changes the estimates of the cost of disk I/O relative to the cost of using CPUs.
effective_io_concurrency (integer) - Default is 1. Range is from 1 to 1000. A value of 0 disables

asynchronous I/O (you should not set it to zero).
Sets a limit on the number of blocks that each server process will asynchronously read/write. For HDD-based
storage systems, the starting point can be the number of hard drives. For SSDs, you can increase it to a value
after which the acceleration of reading/writing with 8-kilobyte blocks stops growing significantly (for example,
64). This parameter is also taken into account by the scheduler when estimating the cost of Bitmap Index Scan.
maintenance_io_concurrency (integer) - Default is 10. Same meaning as effective_io_concurrency, but is
used by background processes and server processes when executing data maintenance commands. For
example, creating indexes, vacuuming. Its value must be no less than effective_io_concurrency.

https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-resource.html

236Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Four parameters: seq_page_cost, random_page_cost,
effective_io_concurrency, maintenance_io_concurrency

• Overrides the parameter values set at the cluster level
• Affect the cost of the SQL command execution plan
• Can be specified when creating a tablespace:

CREATE TABLESPACE name WITH (parameter = value [, ...]);
• Can be changed later:

ALTER TABLESPACE name SET (parameter = value [, ...]);
• You can reset the set value:

ALTER TABLESPACE name RESET (parameter [, ...]);

Tablespace Parameters

Working with log files

The PGDATA/pg_wal directory is where the log files are created. The log records all changes to the cluster file
data blocks (except for unlogged and temporary objects). This is a significant amount of space. By default, the
wal_recycle configuration parameter is on . This means that files are not deleted, but renamed and
their bodies are rewritten. Writing to the file bodies is done in a stream from the beginning of the file to the end
(unless you switch to the next file with the pg_switch_wal() function). The second parameter is
wal_init_zero , the default value is zero, which means: fill with zeros when creating files. When wal_recycle
= on , files are reused and created infrequently, so the additional writing volume is small. When
wal_init_zero = off , a command is given to write the last byte when creating a file to reserve space in the
file system. Writing a byte rather than a block is optimal, since the operating system will use a block of an
appropriate size.

If PGDATA/pg_wal is mounted on an SSD, it is worth ensuring that the volume of stored data does not exceed
the volume of the "SLC cache" which is determined by the technology and algorithm of the controller. For TLC
(triple level cell, 3 bits per cell), the volume of the "SLC cache" (a logical term meaning that the controller writes
to the high-speed first layer that can withstand ~100 thousand write cycles and does not have time to transfer
data to other layers because the SSD blocks occupied by WAL files are overwritten or cleared by discard) cannot
be more than 1/3. If exceeded, then degradation of performance (depends on the algorithm of the controller) and
durability occurs. In other words, when using SSD-based storage systems, the total volume of files on the
PGDATA/pg_wal mount point should not be more than approximately 20% of the size. A large amount of free
space will come in handy if the replica has difficulty receiving log data and the master will hold it. An example of
an error related to lack of space. The server process that was unable to write data to the log is
terminated:
LOG: server process (PID 6353) was terminated by signal 6 : Aborted
The instance crashes:
LOG: all server processes terminated; reinitializing
After restarting the instance, if there is still no space:
LOG: database system was not properly shut down; automatic recovery in progress
FATAL: could not write to file " pg_wal/xlogtemp .6479": No space left on device
It is worth mounting the WAL directory file system with the discard option (continuous TRIM) instead of the fstrim

service, which is optimal for file systems storing data that does not change often. You can check whether
DISCARD is enabled with the Linux command: lsblk --discard

The choice to leave wal_recycle enabled depends on the algorithm of the SSD memory controller and the file
system. The wal_init_zero parameter should be disabled.
wal_compression parameter is disabled by default, allowing you to specify the compression algorithm that will

be used to compress full page writes that are periodically written to the log. Possible values are pglz, lz4,
zstd, on, off . The default is off .

https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-wal.html
https://wiki.archlinux.org/title/Solid_state_drive_(Russian)
https://en.wikipedia.org/wiki/Multi-level_cell

237Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• wal_recycle and wal_init_zero parameters determine how
the WAL log files are handled.

• By default, files are reused, newly created ones are filled with
zeros.

• PGDATA/pg_wal stores log files, it can be mounted on a separate
partition

• It is recommended to enable
page image compression with the
wal_compression parameter .

• When using an SSD, most
of the file system partition
must be free.

Working with log files

The main data storage layer

The object files in the tablespace are divided into types, which in PostgreSQL are called forks. All files
are divided into 8K blocks. The minimum file size is 8K.
Object data is stored in the main layer files (main fork). First, the first main layer file is created and

increased to 1 GB. Then the next file is created and increased to 1 GB, and then the following ones. The
maximum size of a table (and any relation) is 32 terabytes (for a block size of 8 KB). Access to blocks
of all layers of persistent storage objects occurs through a buffer cache common to all cluster
processes. The size of the buffer cache is determined by the shared_buffers parameter.
Access to temporary object blocks (temporary tables and indexes on them, sequences) occurs

through a buffer in the local memory of the server process. The buffer size is determined by the
temp_buffers parameter . The value can be changed in a session, but only before the first access
to a temporary object. Temporary object files have the same format as permanent storage objects.
Files of all layers are located in one tablespace in one directory and cannot be located in multiple

tablespaces.
For regular objects, the file name prefix is a number and is stored in the relfilenode column of
the pg_class table .
If the layer file (main,fsm) grows to 1Gb, a new file with the suffix " .1 " is created. The following

files will have the suffix " .2 " and so on.

238Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• consists of files up to 1GB in size
• new files are created when the previous layer file reaches

1GB
• Maximum layer file size 32TB
• Work with files of all layers of persistent storage objects

occurs through the buffer cache
• Work with files of all layers of temporary objects occurs

through a buffer in the local memory of the server process
• Files of all layers are located in one directory of one

tablespace.

The main data storage layer

Additional layers

For objects (except hash indexes), an "fsm" layer (free space map) is created. The files of this layer
store a structure that reflects the availability of free space in the main layer blocks. The structure is
organized not as a list, but as a balanced tree, so that processes can quickly find a block to insert a new
record into the main layer block.
For relations (except indexes), a "vm" layer (visibility map and freeze map) is created. This layer file

stores two bits per table's primary layer block. A one in the first bit indicates that all rows in the primary
layer block are of the latest version (there are no rows that can be cleared). This bit is used by
vacuuming and index only scan access methods; blocks with this bit are not accessed. If the second bit
is one (the bit is set), this means that all rows on this page are frozen. This bit is used by vacuuming in
freeze mode to skip blocks that were processed last time and have not changed since then. The file is
created and updated by the process that performs vacuuming. If the file is missing (lost), it is recreated,
and all primary layer blocks are processed.
Unlogged tables and indexes on them have an "init" layer consisting of a file of one block size (8Kb),

which after an incorrect shutdown of the instance is copied to the location of the first file of the main
layer (if there are other files, they are deleted) of the unlogged object and the object becomes empty.
https://docs.tantorlabs.ru/tdb/en/17_5/se/storage.html

239Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Free Space Map (fsm)
• not created for hash indexes
• created by vacuuming
Visibility Map (vm)
• not created for indexes
• created by vacuuming
• two bits per base layer block
• the first bit set means that all lines of the block are current and there

are no old versions
• the second bit set means that all rows of the block are frozen
Initialization layer (init)
• created for unlogged tables and indexes
• file size one block without data

Additional layers

Location of object files

If the object is located in the default tablespace, its files are located in the directory:
PGDATA/base/{oid of database from pg_database}
If the object is located in other tablespaces (the value of the reltablespace column in pg_class is not

zero), then the object files are located in the directory:
PGDATA/pg_tblspc/{reltablespace from pg_class}/{oid of database}
Object file names begin with relfilenode from pg_class .
For temporary objects, the file name has the form t B _ FFF , where B is a number that corresponds

to the value in the name of the temporary schema in which the temporary object was created, FFF is
the rel filenode value of the pg_class table . The values of the relfilenode and oid
columns may not match, since TRUNCATE, REINDEX, CLUSTER , and other commands create a file
with a new name, but do not change the oid of the object. Moreover, for some objects, the
relfilenode value is zero.
To get the location (relative to PGDATA) of the first file of the main layer (main), use the function
pg_relation_filepath(oid)
To get the file name prefix, use the pg_relation_filenode(oid) function.

240Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• If the object is located in pg_default then the files are
located in the directory:
PGDATA/base/{oid database}

• If in other tablespaces (the reltablespace column value in
pg_class is not zero), then:
PGDATA/pg_tblspc/{reltablespace}/{oid of database}

• Object file names start with relfilenode
• To get the location (relative to PGDATA) of the first data file

of an object, use the pg_relation_filepath(oid)
function.

Location of object files

Tablespace and Database Sizes

The sizes of tablespaces of the entire cluster can be viewed using the psql \db+ command.
postgres=# \db+
List of tablespaces

Name | Owner | Location | Permissions | Options | Size
-----------+----------+----------+-------------+---------+--------
pg_default | postgres | | | | 30 MB
pg_global | postgres | | | | 565 kB
You can also look at the pg_tablespace_size(oid) function :
postgres=# SELECT spcname, pg_size_pretty(pg_tablespace_size(oid)) FROM
pg_tablespace;

spcname | pg_size_pretty
------------+----------------
pg_default | 30 MB
pg_global | 565 kB

Database size command l+ or function pg_database_size(name) :
postgres=# SELECT datname, pg_size_pretty(pg_database_size(datname)) FROM
pg_database;

datname | pg_size_pretty
---------------+----------------
postgres | 7737 kB
template1 | 7609 kB
template0 | 7377 kB
lab01iso88595 | 7537 kB
pg_size_pretty() function prints the number in a human-readable form by appending the

characters k B MB GB TB .

241Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• size of cluster tablespaces \db+ or pg_tablespace_size()
function

• database size: \l+ or pg_database_size() function

Tablespace and Database Sizes

postgres=# \db+
List of tablespaces
Name | Owner | Location | Permissions | Options | Size
------------+----------+--------------+---------------+-----------+--------
pg_default | postgres | | | | 30 MB
pg_global | postgres | | | | 565 kB
postgres=# SELECT spcname, pg_size_pretty(pg_tablespace_size(oid)) FROM pg_tablespace;
spcname | pg_size_pretty

------------+----------------
pg_default | 30 MB
pg_global | 565 kB

postgres=# SELECT datname, pg_size_pretty(pg_database_size(datname)) FROM pg_database;
spcname | pg_size_pretty

------------+----------------
pg_default | 30 MB
pg_global | 565 kB

Sizing functions

Determining the size of an object can be useful to determine which objects take up the most space
and require attention.
The list of functions that return the size of objects can be obtained by the command:
\dfS *size or by the query
SELECT proname, pg_get_function_arguments(oid) FROM pg_proc WHERE proname LIKE
'%size' ORDER BY 1;
proname | pg_get_function_arguments
------------------------+---------------------------
pg_column_size | "any"
pg_database_size | name
pg_database_size | oid
pg_indexes_size | regclass
pg_relation_size | regclass
pg_relation_size | regclass, text
pg_table_size | regclass
pg_tablespace_size | name
pg_tablespace_size | oid
pg_total_relatio n_size | regclass
(10 lines)
Functions can return the sizes of individual layers, the total size of a table with or without a TOAST

table and indexes. A description of what function returns what can be found in the documentation
section on administration functions:
https://docs.tantorlabs.ru/tdb/en/17_5/se/functions-admin .html

242Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• There are a set of functions for getting the size of object files
• pg_relation_size(regclass, 'main' | 'vm' | 'fsm' init') returns

layer sizes
• pg_indexes_size() size of all indexes created on the table
• pg_table_size() table size (TOAST and all layers) without

indexes
• pg_total_relation_size() table size including TOAST, all

indexes and layers

Sizing functions

Moving objects

You can move table, index, and materialized view files from one tablespace to another.
When moving, files are read block by block and their contents are copied to new files. During the

move, space in the tablespace directory is used where the objects are moved. After the move, the files
in the original tablespace are deleted. The entire volume of moved data passes through WAL.
The second thing to consider is that locks placed on moved objects will not allow even SELECT
commands to work with the objects , since almost all (except those launched with the
CONCURRENTLY option) require an ACCESS EXCLUSIVE level lock (exclusive mode of
working with the object) . First, the move command is queued to receive a lock and waits until all
transactions and any single commands finish working with the object that needs to be moved. SELECT
commands can work for a long time. At the same time, the move command causes any commands
wishing to work with the moved object to wait until it receives a lock and finishes the move.
Commands to move object files to another tablespace:
ALTER {TABLE | INDEX | MATERIALIZED VIEW } [IF EXISTS] name SET TABLESPACE
where;
ALTER {TABLE | INDEX | MATERIALIZED VIEW } ALL IN TABLESPACE name [OWNED BY
role [, ...]] SET TABLESPACE where [NOWAIT];
REINDEX [TABLESPACE where] { INDEX | TABLE | SCHEMA | DATABASE | SYSTEM } [
CONCURRENTLY] name;
When using the NOWAIT option, an error is generated if the command cannot
immediately acquire all locks on all affected objects.
There is a parameter lock_timeout that can be used to set the maximum time to wait for any

command to obtain an explicit or implicit lock. If sessions are constantly working with the object, using
this parameter can allow you to obtain a lock by setting an acceptable timeout.
statement_timeout parameter which must be greater than lock_timeout because the time it

takes to obtain locks is taken into account. This parameter specifies the maximum time a command can
execute before it is cancelled. For move commands, statement_timeout is unlikely to be useful.

243Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• you can move files of tables, indexes, materialized views
• the contents of all layers are copied to new files
• sets an exclusive lock that is incompatible even with the
SELECT command

• The ALTER ALL IN TABLESPACE command moves all
objects of the same type in the current database.

Moving objects

Change of scheme and owner

In addition to moving files to another tablespace, you can change the object owner and schema for
those objects that should have them.
When changing a schema or owner, the changes are propagated to dependent objects. For example,

indexes created on a table, integrity constraints, and sequences associated with columns are moved to
another schema along with the table.
The owner and schema of an index always is and becomes the owner and schema of the table.
To change the owner, use the command:
ALTER object_type name OWNER TO role ;
To change the schema, use the command:
ALTER object_type name SET SCHEMA schema ;
These commands are not combinable with each other, are executed separately and require an

exclusive lock, but for a short time.
To mass reassign all role objects in one database to another role, use the command:
REASSIGN OWNED BY role TO role;
There is also a command to delete objects belonging to a role in the database:
DROP OWNED BY name [CASCADE]; The CASCADE option can be used to drop dependent objects

owned by other roles.

244Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• you can change the owner of the object and the scheme of those
objects that should have them

• To change the owner, use the command:
ALTER object_type name OWNER TO role;

• To change the schema, use the command:
ALTER object_type name SET TO schema;

• To mass reassign all role objects in one database to another role, use
the command:
REASSIGN OWNED BY role TO role;

• deleting objects belonging to a role in the database:
DROP OWNED BY name [CASCADE];

Change of scheme and owner

Reorganizing and moving tables with pg_repack utility

Tantor Postgres has a pg_repack extension that allows you to move objects to another tablespace without
setting an exclusive lock on the objects for the duration of the operation. Instead, a lock of the most lenient level
ACCESS SHARE is set. Such a lock is set by SELECT commands .

At the end of the move, an exclusive lock is acquired for a short time. You can set a timeout for acquiring this
lock with the --wait-timeout option . After the timeout, pg_repack can cancel its operation by setting the
--no-kill-backend option . By default, pg_repack cancels commands that prevent it from acquiring the lock.
If after the same amount of time it still cannot acquire the lock, it will disconnect the backend processes with the
pg_terminate_backend() function .

Moving objects to another tablespace is not the main purpose of pg_pepack , this utility reorganizes object files
to make the structure more compact.

You can specify the number of parallel sessions with the --jobs parameter to simultaneously rebuild multiple
indexes on a single table in full table reorganization mode.

Reorganization of objects is started by the command line utility pg_repack , but for it to work the extension
must be installed in the databases. To do this, simply execute the command CREATE EXTENSION pg_repack; in
the databases whose objects you want to reorganize. Databases in which the extension is not installed are
ignored by the utility.

Reorganization can be performed in different modes: analog VACUUM FULL , CLUSTER , REINDEX . Additional
free space is required for the duration of the operation: the size of the objects being reorganized plus the
changes in the lines that will accumulate during the transfer. The entire volume of transferred data passes
through WAL logs.

The transfer is organized by creating a trigger that captures the changes and saves them to the change log
table. A new table is created, the data from the original table is transferred to it, this is the longest part. After the
transfer is complete, indexes are created on the new table. Then the accumulated changes are transferred from
the change log table until there are a couple of dozen rows left in it, then an exclusive lock is set on the original
table, these rows are transferred and the original table is replaced with a new one. When using integrity
constraints with deferred verification on the table, errors in the extension are possible during the transfer of rows
from the log table. The speed of operation is comparable to the speed of the CLUSTER command.

https://docs.tantorlabs.ru/tdb/en/17_5/ be /pg_repack.html

245Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_repack command line utility
• available in Tantor Postgres
• you need to install the extension in the databases where you

need to reorganize the tables
• reorganization of table files with or without moving to another

tablespace
• During the reorganization process, an ACCESS SHARE lock is

set, allowing the execution of VACUUM, ANALYZE, SELECT,
DML commands

• At the end of the reorganization, an exclusive lock is
established for a short period of time

Reorganizing and moving tables with pg_repack
utility

Reducing the size of table files with the pgcompacttable utility

The pgcompacttable utility is supplied with Tantor Postgres and is located in the
/opt/tantor/db/17/tools/pgcompacttable directory .
The utility reduces the size of table and index files without heavy locking and without a sharp load that

affects performance. Files can increase ("bloat") in size due to a large number of deleted rows or
frequent row updates if autovacuum was unable to clean up old row versions.
Differences from pg_repack:
1) The free space required for operation is equal to the size of the largest index. pg_repack requires

double the size of the table and indexes. pgcompacttable processes the contents of table files, indexes
are rebuilt in turn, first the smaller, then the larger by file size
2) tables are processed with a delay to prevent sudden I/O spikes and delays in replication (if any).

pg_repack runs at maximum speed and load on the file system
3) cannot move files to another tablespace.
Before PostgreSQL version 17, there was a configuration parameter old_snapshot_threshold. When this

parameter is set, the pgcompacttable utility cannot reduce file sizes, since VACUUM cannot perform
the vacuum_truncate phase. This is described in the documentation for the old_snapshot_threshold
parameter. The pgcompacttable utility itself does not reduce file sizes, vacuum does.
Installation:

1)in databases you need to install the standard pgstattuple extension:
CREATE EXTENSION pgstattuple;
2)install Perl: apt-get install libdbi-perl libdbd-pg-perl
or yum install perl-Time-HiRes perl-DBI perl-DBD-Pg
3)For security reasons, others does not have rights to the
/opt/tantor/db/17/tools directory , the directory is owned by root and the root group. The
postgres user does not have rights to this directory. This directory contains the pgcompacttable utility
and other utilities. To access the pgcompacttable utility, you need to grant access rights to the utility.
For example, with the following command: sudo chmod 755 -R /opt/tantor/db/17/tools
https://docs.tantorlabs.ru/tdb/en/17_5/se/pgcompacttable.html

246Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Utility written in Perl
• uses the standard pgstattuple extension
• Differences from pg_repack:

› free space is equal to the size of the largest index, not twice
the size of the table and indexes

› tables are processed with adaptive latency rather than full load
› cannot move files to another tablespace

Reducing the size of table files with the
pgcompacttable utility

TOAST (The Oversized-Attribute Storage Technique)

Regular tables (heap tables) store data "row by row" - all fields of one row physically next to each
other, then all fields of another row, if these fields "fit" into one data block of 8 KB. If a row does not
"fit" into a data block, then TOAST (The Oversized - Attribute Storage Technique) technology is used:
some fields are transferred to a separate TOAST service table. The name of this table is not used in SQL
commands and its use is completely transparent. You can set the storage mode of the fields of these
columns on each column of the table using the ALTER TABLE name ALTER COLUMN name SET
STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT } command. For example, for the
EXTENDED mode set on columns, the fields of such columns will first be compressed and if a row with
compressed fields fits into the block, the row will be saved in the table block. If the row does not fit into
the block, then some of the row fields will be moved to the TOAST table. For each data type that may
potentially not fit into the block (the data type that "supports" storage in TOAST), the storage mode is
defined by default (called the "strategy" for storing fields of this type) and for most data types , the
EXTENDED strategy is set . This mode is optimal if the SQL commands will process the entire field
and the values are well compressed. If the values are poorly compressed or you plan to process the
field values (for example, text fields with the substr, upper functions), then it may be more
effective to use the EXTERNAL mode . For data types that are small in size and are not intended for
storage in TOAST (for example, the DATE type), the PLAIN storage "strategy" (default mode) is
set and you cannot change the mode to another one using the ALTER TABLE command; the error "
ERROR: column data type type can only have storage PLAIN " will be returned .
The storage method for heap tables allows compression of individual field values. Compression

algorithms are less effective on small data. Access to individual columns is not very effective because
the server process needs to find the block that stores the part of the row that fits into the block, then
separately determine for each row whether it is necessary to access the TOAST table rows, read its
blocks and "glue" the parts of the fields (chunk) that are stored in it as rows of this table.
https://docs.tantorlabs.ru/tdb/en/17_5/se/storage-toast.html

247Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Regular tables (heap tables) store data "row by row"
• If the string does not fit in the data block, then TOAST technology

is used.
• Four storage modes at the column level: PLAIN, EXTERNAL,

EXTENDED, MAIN
• For small data types, storage in TOAST is not provided and the

only mode is PLAIN
• For most other data types, the default mode is EXTENDED
• field-level compression is used, for small fields compression is

ineffective

TOAST (The Oversized-Attribute Storage Technique)

TOAST (The Oversized-Attribute Storage Technique)

TOAST (The Oversized-Attribute Storage Technique) is used not only for storing individual fields in a
TOAST table. The PostgreSQL core code is used when processing long values in memory. Not all built-
in data types support the TOAST technique. Fixed-length data types do not support it, since their length
is small and the same for any value ("fixed"), for example, 1,2,4,8 bytes.
The size of a type that supports TOAST is limited to 1 Gigabyte. This limitation follows from the fact

that 30 bits (2 ^ 30 = 1 Gb) of 1 or 4 bytes (3 2 bits) are allocated for the length at the beginning of the
field in the block. Two bits in these bytes are used to indicate: 00 - the value is short, not TOAST, the
remaining bits specify the length of the field together with this byte; 01 - the field length is stored in one
byte, the remaining bits specify the length of the field in bytes and these 6 bits can store a length from 1
to 126 bytes (2 ^ 6 = 64, but this is for the range from zero); 10 - the value is compressed, the
remaining bits specify the length of the field in compressed form. Values with one byte of the field
header are not aligned. Values with four bytes of the field header are aligned along the
pg_type.typealign boundary .
The fields taken out to TOAST are divided into parts - "chunks" (after compression, if it was applied)

of 1996 bytes in size (the value is specified by the constant TOAST_MAX_CHUNK_SIZE), which are
located in the rows of the TOAST table of 2032 bytes in size (the value is specified by the constant
TOAST_TUPLE_THRESHOLD). The values are chosen so that four rows fit into the TOAST table block.
Since the table field size is not a multiple of 1996 bytes, the last chunk of the field can be smaller.
The TOAST_MAX_CHUNK_SIZE value is stored in the cluster control file and can be viewed using the
pg_controldata utility .
The TOAST table has three columns: chunk_id (OID type, unique for the field taken out to TOAST, size

4 bytes), chunk_seq (chunk ordinal number, size 4 bytes), chunk_data (field data, bytea type, size of
raw data plus 1 or 4 bytes for storing the size). For quick access to chunks, a composite unique index is
created on the TOAST table by chunk_id and chunk_seq. A pointer to the first chunk of the field and
other data remains in the table block. The total size of the remaining part of the field in the table is
always 18 bytes .
In 32-bit PostgreSQL, the chunk size is 4 bytes larger: 2000 bytes.
In AstraLinux PostgreSQL the chunk size is 8 bytes smaller: 1988 bytes.
https://docs.tantorlabs.ru/tdb/ru/15_6/se/storage-toast.html

248Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• TOAST is a technique for storing large "attributes" (fields)
• Large fields are fields that do not fit into the block.
• allows you to store fields up to 1GB in size
• if the table has a deliberately large field or a row with a large field is

inserted, then a toast table and an index on the toast table are created
• individual row fields are taken out into TOAST
• the extracted fields are divided into parts (chunks) of 1996 bytes:

TOAST (The Oversized-Attribute Storage Technique)

postgres@tantor:~$ pg_controldata | grep TOAST
Maximum size of a TOAST chunk: 1996
postgres@tantor:~$ /usr/lib/postgresql/15/bin/pg_controldata
-D /var/lib/postgresql/15/main| grep TOAST
Maximum size of a TOAST chunk: 1988
postgres@vanilla- x32 :~$ pg_controldata | grep TOAST
Maximum size of a TOAST chunk: 2000

Variable length fields

A row (record) of a table must fit into one block of 8Kb and cannot be located in several blocks of
table files. However, rows can be larger than 8Kb. TOAST is used to store them.
A btree index entry cannot exceed approximately one-third of a block (after compression of the

indexed columns, if applied to the table).
TOAST supports varlena data types (pg_type.typlen=-1) . Fixed-length fields cannot be

stored outside the table block, because there is no code written for these data types to implement
storage outside the table block (in a TOAST table). In this case, the row must fit in one block and the
actual number of columns in the table will be less than the 1600-column limit (
MaxHeapAttributeNumber in htup_details.h).
To support TOAST, the first byte or first 4 bytes of a varlena field always (even if the field size is small

and not TOASTed) contain the total length of the field in bytes (including these 4 bytes). Moreover, these
bytes can (but not always) be compressed together with the data, i.e. stored in compressed form. One
byte is used if the field length does not exceed 126 bytes. Therefore, when storing field data up to 127
bytes in size, three bytes are "saved" on each row version, and there is no alignment, which can save
up to 3 (typealign='i') or up to 7 bytes (typealign='d').
In other words, a storage scheme designer is better off specifying char(126) and less than char(127)

and greater .
Varlena fields with one length byte are not aligned , and fields with 4 length bytes are aligned to

pg_type.typealign. Most variable-length types are aligned to 4 bytes (pg_type.typalign=i). The
lack of alignment provides a gain in storage space, which is noticeable for short values. But you should
always remember to align the entire string to 8 bytes, which is always done .
Compression is supported only for variable-length data types. Compression is performed only if the

column storage mode is set to MAIN or EXTENDED. If a field is stored in TOAST and the UPDATE
command does not affect that field, the field will not be specially compressed or decompressed.

249Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the line must fit into one block
• varlena fields that do not fit into the block are moved to the TOAST

table
• fixed-length data types are not compressed or TOASTed
• The storage strategy can be set with the command ALTER TABLE
name ALTER COLUMN name SET STORAGE { PLAIN | EXTERNAL |
EXTENDED | MAIN | DEFAULT } .

• compression is supported for MAIN and EXTENDED
• 1 byte at the beginning of a variable length field stores the length of a

field up to 127 bytes long
• 4 bytes at the beginning of a variable length field stores the field length

for fields longer than 126 bytes

Variable length fields

Most variable-length types default to EXTENDED mode , except for the following types:
select distinct typname, typalign, typstorage, typcategory, typlen from pg_type
where typtype='b' and typlen<0 and typstorage<>'x' order by typname;

typname | typalign | typstorage | typcategory | typlen
------------+----------+------------+-------------+--------
cidr | i | m | I | -1
gtsvector | i | p | U | -1
inet | i | m | I | -1
int2vector | i | p | A | -1
numeric | i | m | N | -1
oidvector | i | p | A | -1
tsquery | i | p | U | -1
(7 rows)
For each column, in addition to the mode, you can also set the compression algorithm (CREATE or

ALTER TABLE). If you do not set it, the algorithm from the default_toast_compression parameter
is used , which is set by default to pglz .
The storage mode (strategy) can be set with the command ALTER TABLE name ALTER COLUMN name
SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT } .
EXTERNAL is like EXTENDED, but without compression and not set by default on standard types. If the
pglz algorithm cannot compress the first kilobyte of data, it gives up trying to compress.

250Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Field displacement in TOAST

The storage method for regular tables (heap tables) allows compression of individual field values.
Compression algorithms are less effective on small data. Access to individual columns is not very
effective because the server process needs to find the block that stores the part of the row that fits in
the block, then separately determine for each row whether it is necessary to access the TOAST table
rows, read its blocks and glue the parts of the fields (chunk) that are stored in it as rows of this table.
A table can have only one associated TOAST table and one TOAST index (a unique btree index on the
chunk_id and chunk_seq columns). The TOAST table OID is stored in the
pg_class.reltoastrelid field .
When accessing each displaced field, 2-3 TOAST index blocks are additionally read, which reduces

performance even if the blocks are in the buffer cache. The main slowdown is in obtaining a lock to
read each extra block. Any shared resources (that which is not in the local memory of the process)
require obtaining a lock even to read the resource.
The fields after compression (if any) are divided into parts (chunk) by 1996 bytes :
postgres@tantor:~$ pg_controldata | grep TOAST
Maximum size of a TOAST chunk: 1996
In PostgreSQL, a row is considered for TOASTing a portion of its fields if the row is larger than 2032

bytes. The fields will be compressed and considered for TOASTing until the row fits into 2032 bytes or
toast_tuple_target bytes if the value was set with the command:
ALTER TABLE t SET (toast_tuple_target = 2032);
The rest of the line must fit into one block (8Kb) in any case.
For postgresql from Astralinux 1.8.1:
Maximum size of a TOAST chunk: 1988
therefore, fields longer than 1988+8=1996 bytes will be taken out, and not 2004. In this case, a field of

1997 bytes will also generate 2 chunks, the second chunk of 9 bytes, the first of 1988 bytes.
In 32-bit PostgreSQL 9.6 - 2009 bytes (and the maximum chunk size is 2000).

251Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• fields of lines longer than 2032
bytes are removed
› in this case, the fields are cut into

parts of 1996 bytes
• the algorithm (order) of

displacement depends on the
order of the columns

• when accessing each displaced
field, an additional 2-3 TOAST
index blocks are read

select reltoastrelid, reltoastrelid::regclass
from pg_class where relname='t';
reltoastrelid | reltoastrelid
---------------+-------------------------
74295 | pg_toast.pg_toast_74292
\d+ pg_toast.pg_toast_74292
TOAST table "pg_toast.pg_toast_74292"

Column | Type | Storage
------------+---------+---------
chunk_id | oid | plain
chunk_seq | integer | plain
chunk_data | bytea | plain

Owning table: "public.t"
Indexes:

"pg_toast_74292_index" PRIMARY KEY,
btree (chunk_id, chunk_seq)

Access method: heap
select chunk_id, chunk_seq, length(chunk_data)
from pg_toast.pg_toast_74292;
chunk_id | chunk_seq | length

----------+-----------+--------
74297 | 0 | 1996
74297 | 1 | 9

Field displacement in TOAST

Field displacement algorithm in TOAST

When a row is inserted into a table, it is completely placed in the server process memory in a 1GB
string buffer (or 2GB for sessions with the enable_large_allocations=on configuration
parameter set).
Four-pass displacement algorithm:
1) EXTENDED and EXTERNAL fields are selected in turn, from largest to smallest. After each field is

processed, the row size is checked and if the size is less than or equal to toast_tuple_target
(default 2032 bytes), then the eviction is stopped and the row is saved in the table block.
An EXTENDED or EXTERNAL field is taken. EXTENDED is compressed. If the size of the row with the

field in compressed form exceeds 2032, the field is displaced in TOAST. The EXTERNAL field is
displaced without compressing.
2) If the row size is still greater than 2032, the second pass flushes the remaining already compressed

EXTENDED and EXTERNAL in turn until the row size is less than 2032.
3) If the row size is not less than 2032, the MAIN fields are compressed in order of size. After each

field is compressed, the row size is checked.
4) If the row size has not become less than 2032, the MAIN compressed in the 3rd pass are evicted

one by one.
5) If the string size does not fit into the block, an error is generated:
row is too big: size ..., maximum size ...
When updating a string, processing is performed on the fields affected by the command within the

string buffer. Fields not affected by the command are represented in the buffer by an 18-byte header.

252Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• when inserting a row into a table, it is completely placed in the server
process memory in a 1GB (or 2GB) string buffer

• When updating a string, processing is performed on the fields affected
by the command within the string buffer. Fields not affected by the
command are represented in the buffer by an 18-byte header.

• after processing (compression or removal) of each field, the size of the
string is checked. If the size does not exceed toast_tuple_target
(default 2032 bytes), the string is saved to the buffer and the
processing of the string is finished

• processing starts with the EXTENDED and EXTERNAL fields from
largest to smallest

• compression and removal of MAIN fields is performed only after
removal of all EXTENDED and EXTERNAL fields

Field displacement algorithm in TOAST

Toast chunk

The field is TOASTed if the row size is larger than 2032 bytes, and the field will be cut into 1996-byte
chunks. Because of this, a small chunk will appear for a field larger than 1996 bytes , which will be
inserted by the server process into a block with a large chunk. For example, to insert 4 rows into a
table:
drop table if exists t;
create table t (c text);
alter table t alter column c set storage external;
insert into t VALUES (repeat('a',2005));
insert into t VALUES (repeat('a',2005));
insert into t VALUES (repeat('a',2005));
insert into t VALUES (repeat('a',2005));
в блок TOAST поместится 3 длинных чанка:
SELECT lp,lp_off,lp_len,t_ctid,t_hoff FROM heap_page_items(get_raw_page((SELECT
reltoastrelid::regclass::text FROM pg_class WHERE relname='t'),'main',0));

lp | lp_off | lp_len | t_ctid | t_hoff
----+--------+--------+--------+-------
1 | 6152 | 2032 | (0,1) | 24
2 | 6104 | 45 | (0,2) | 24
3 | 4072 | 2032 | (0,3) | 24
4 | 4024 | 45 | (0,4) | 24
5 | 1992 | 2032 | (0,5) | 24
6 | 1944 | 45 | (0,6) | 24

The total size of a string with a long chunk is 2032 bytes (6104 - 4072).
select lower, upper, special, pagesize from page_header(get_raw_page((SELECT
reltoastrelid::regclass::text FROM pg_class WHERE relname='t'),'main',0));
lower| upper | special | pagesize
-----+-------+---------+---------
48 | 1944 | 8184 | 8192

Example of how to calculate block space for 4 lines of 2032 bytes (with 4 chunks):
24 (header) + 4*4 (header) + 2032*4 + 8 (pagesize-special) = 8176. 16 bytes are not used, but

they could not be used, since the lines are aligned to 8 bytes, and there are 4 of them.

253Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• when using EXTERNAL, fields of
1997 bytes or more create a
second chunk of small size, due
to which only 3 large chunks fit
into the TOAST block

• for EXTERNAL fields with a size
from 1997 to ~2300 bytes there is
a possibility of less dense storage

select reltoastrelid, reltoastrelid::regclass
from pg_class where relname='t';
reltoastrelid | reltoastrelid
---------------+-------------------------
74295 | pg_toast.pg_toast_74292
\d+ pg_toast.pg_toast_74292
TOAST table "pg_toast.pg_toast_74292"

Column | Type | Storage
------------+---------+---------
chunk_id | oid | plain
chunk_seq | integer | plain
chunk_data | bytea | plain

Owning table: "public.t"
Indexes:

"pg_toast_74292_index" PRIMARY KEY,
btree (chunk_id, chunk_seq)

Access method: heap
select chunk_id, chunk_seq, length(chunk_data)
from pg_toast.pg_toast_74292;
chunk_id | chunk_seq | length

----------+-----------+--------
74297 | 0 | 1996
74297 | 1 | 9

TOAST chunk

TOAST Limitations

In PostgreSQL there is no special service area at the end of table blocks:
48 | 1952 | 8192 | 8192
In 32-bit PostgreSQL:
Maximum size of a TOAST chunk: 2000
When using EXTENDED, the field will most likely be compressed and there will be no small chunk.
https://eax.me/postgresql-toast/

Each field is stored in a TOAST table as a set of rows (chunk) stored as a single row in the TOAST
table.
The main table field stores a pointer to the first chunk of size 18 bytes (regardless of the field size).

These 18 bytes store the varatt_external structure , described in varatt.h :
the first byte has the value 0x01, this is a sign that the field is TOASTed;
the second byte is the length of this record (value 0x12 = 18 bytes);
4 bytes length of the field with the field header before compression;
4 bytes is the length of what is TOASTed;
4 bytes - pointer to the first chunk in TOAST (chunk_id column of TOAST table);
4 bytes - oid of toast table (pg_class.reltoastrelid)
The chunk_id column (oid type 4 bytes) can have 4 billion (2 to the power 32) values. This means that

only 4 billion fields (not even rows) can be TOASTed in a single table. This significantly limits the
number of rows in the original table and monitoring is probably desirable. Partitioning can work around
this limitation.
The MAIN mode is used for storage inside a block in compressed form, EXTERNAL - for storage in

TOAST in uncompressed form, EXTENDED - for storage in TOAST in compressed form. If the values
are poorly compressed or you plan to process field values (for example, text fields with the substr,
upper functions), then using the EXTERNAL mode will be effective. For fixed-length types, the PLAIN
mode is set, which cannot be changed by the ALTER TABLE command, the error " ERROR: column
data type type can only have storage PLAIN " will be returned.

254Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• any table in TOAST can have no more than 2^32 fields (~4 billion)
• for a field in TOAST, 18 bytes are stored in the table block, they are not

aligned, but the entire row is aligned
• the value remaining in the table block after the field has been TOASTed:

TOAST Limitations

01
length before
compression
D9 07 00 00

12 length in TOAST
D5 07 00 00

chunk_id
39 22 01 00

toast_OID
37 22 01 00

2009 bytes 2005
bytes

74297 74295181

18 bytes

select lp_len, t_data from heap_page_items(get_raw_page('t', 0));
lp_len | t_data

--------+--
42 | \x0112d9070000d50700003922010037220100

toast_tuple_target and default_toast_compression parameters

The eviction is affected by two macros defined in the source code (heaptoast.h):
TOAST_TUPLE_THRESHOLD and TOAST_TUPLE_TARGET, which have the same value. If the row size

is greater than TOAST_TUPLE_THRESHOLD, then compression and/or eviction of row fields begins.
Fields will be compressed and considered for TOAST storage until the rest of the row (complete: with

row header) fits into TOAST_TUPLE_TARGET. This value can be overridden at the table level:
ALTER TABLE t SET (toast_tuple_target = 2032);
TOAST_TUPLE_THRESHOLD is not overridden.
There is also a parameter that sets the compression algorithm pglz or lz4:
default_toast_compression
The constants are defined in the source code:
#define MaximumBytesPerTuple(tuplesPerPage) MAXALIGN_DOWN((BLCKSZ - MAXALIGN(SizeOfPageHeaderData +

(tuplesPerPage) * sizeof(ItemIdData)))/(tuplesPerPage))
#define TOAST_TUPLES_PER_PAGE 4
#define TOAST_TUPLE_THRESHOLD MaximumBytesPerTuple(TOAST_TUPLES_PER_PAGE)
#define TOAST_TUPLE_TARGET TOAST_TUPLE_THRESHOLD

Block header parameters:
ItemIdData = 4 bytes
SizeOfPageHeaderData = 24 bytes

Be the first person in the country, to see:
TOAST_TUPLE_TARGET = TOAST_TUPLE_THRESHOLD = MAXALIGN_DOWN((BLCKSZ - MAXALIGN(24 + (4) *

sizeof(4)))/(4))=MAXALIGN_DOWN((BLCKSZ - MAXALIGN(24 + 4*4))/4)= MAXALIGN_DOWN((8192 -
MAXALIGN(40))/4)=MAXALIGN_DOWN((8192-40)/4)=MAXALIGN_DOWN(2038)= 2032 .
TOAST_TUPLE_TARGET also defines the maximum size of TOAST table rows. The header of a row of a

regular and TOAST table is 24 bytes. The size of the data area of a TOAST table row is 2032-24=2008
bytes. There are three fields in a row: oid (4 bytes), int4 (4 bytes), bytea. In bytea, the first byte at the
beginning of a variable-length field stores the length of a field up to 127 bytes long, the first 4 bytes at
the beginning of a variable-length field store the length of a field for bytea longer than 126 bytes.
Alignment is 4 bytes. 2008-4-4-4=1996.

255Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• two macros affect the eviction: TOAST_TUPLE_THRESHOLD and
TOAST_TUPLE_TARGET
› by default equal to 2032

• if the row size is greater than TOAST_TUPLE_THRESHOLD, then
compression and/or displacement of row fields begins

• fields will be compressed and considered for storage in TOAST until the
remaining fields fit in TOAST_TUPLE_TARGET

• TOAST_TUPLE_TARGET can only be overridden at the table level :
• ALTER TABLE t SET (toast_tuple_target = 2032) ;
• TOAST_TUPLE_THRESHOLD is not overridden
• default_toast_compression configuration parameter sets the

compression algorithm:
• ALTER SYSTEM SET default_toast_compression = pglz ;

toast_tuple_target and
default_toast_compression parameters

Columnar Storage: General Information

The idea of the columnar storage method (implementation of Hydra) is to reduce the labor intensity of
accessing data in columns by storing column values together. With this storage method, the data of one
column is stored physically next to each other, either entirely or in a large number of rows. Due to the
fact that the data in each column is similar, it is possible to effectively compress data in large "sets" of
rows (chunks). The size of the "set" can be set at the table level by the
columnar.chunk_group_row_limit parameter .
To use the columnar storage method, it is enough to specify the storage method when creating a

table:
CREATE TABLE name (...) USING columnar ;
Changing the storage format with the ALTER TABLE .. SET ACCESS METHOD command is not

implemented. If you implement a function to change the storage method and call it, for example,
alter_table_set_access_method , then this function will have to reload all data into new files with
table locking. Non-blocking data reloading is a more universal and complex task that should be
implemented by a separate extension and called, for example, pg_reorg.
Since the data storage differs from the usual one, the heap table access method cannot be used and

the extension creates its own table (amtype = 't') access method. The list of access methods is
stored in the pg_am system catalog table:
SELECT * FROM pg_am WHERE amtype = 't';
oid | amname | amhandler | amtype
-------+----------+------------------------------------+--------
2 | heap | heap_tableam_handler | t
18276 | columnar | columnar_internal.columnar_handler | t
The pg_columnar extension creates the columnar and columnar_internal schemas that it uses to

store its objects.
https://docs.tantorlabs.ru/tdb/en/17_5/se/hydra.html

256Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• reduce the complexity of accessing columnar data by storing
column values together

• it is possible to compress data efficiently compared to field
compression in heap tables

• To use the columnar storage method, it is enough to specify
the name when creating a table:
CREATE TABLE name (...) USING columnar ;

• extension creates table access method columnar
• the list of access methods is in the pg_am table

Columnar Storage: General Information

Columnar storage: features of use

Does the columnar format replace the heap format ? No. The heap format works more
efficiently with single-row queries. In databases serving typical business tasks (OLTP - online
transaction processing) such as sales management, warehouse and personnel records, queries to
single rows are more common than retrieving a large number of rows.
Storing in columnar format is more efficient in cases of: periodic loading of a large set of rows into

a table, reading only part of the columns, no updating and deletion of individual rows. The columnar
format is convenient for data warehouses, where data is accumulated and analytical queries
(processing a large number of rows for the purpose of creating a report or analyzing the accumulated
data) are performed on them.
The columnar format does not support UPDATE and DELETE . TRUNCATE, INSERT (including one

row) , COPY are supported . This is the main thing that limits the use of this storage method. When
trying to execute unsupported commands, an error will be returned:
DELETE FROM perf_columnar WHERE id=0;
ERROR: UPDATE and CTID scans not supported for ColumnarScan
ctid service column in columnar format tables .
TOAST with columnar format is not used, since large values are stored internally. Parallel scanning

is not implemented - the selection is performed by one server process. Indexes of the btree, hash
type are supported for fast checking of integrity constraints (PRIMARY KEY , UNIQUE which are
supported), as well as in the partitioning option. Index types gist, gin, spgist, brin are not
supported , since index access is inefficient. The extension is compatible with table partitioning: a
partitioned table can have sections using both heap and columnar storage formats.
relnamespace='pg_catalog'::text::regnamespace order by 1; will give the TOAST table

names of the 36 system catalog tables that have them.

257Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• UPDATE and DELETE are not supported
• supported commands: TRUNCATE, INSERT (including one

row), COPY
• parallel scanning is not implemented
• supported index types used in integrity constraints: btree ,

hash
• other index types are not supported: gist, gin, spgist, brin
• compatibility with table partitioning: partitions can have

different storage formats
• no service columns ctid, xmin, xmax

Columnar storage: features of use

Columnar Storage: Parameters

Sequential writing to a table of ordered data can significantly reduce the size of indexes (if they are
created) and the size of the unpacked rowsets (chunk). The size of the unpacked data is reduced
because it is typical to specify a filter condition on the column by which the data is ordered, and most
of the requested data is stored together in the case of sequential insertion. For example, data for the
last hour or the last hundred orders (the order number is generated by the sequence) are selected.
Therefore, it is recommended to order the rows before inserting them into the table.
In practice, ordering by time is often encountered. Such data is called "Time Series", the rows are

inserted sequentially in time. For example, sequential insertion into a table of measurement indicators of
some parameter (stock price, vehicle coordinates) in time. Compression in such tables is usually more
effective, since the values of adjacent fields are similar or even do not change (the stock price in
successive transactions was the same).
The most efficient data compression method is zstd.
When reading small amounts of data, using indexes can be more efficient.
The extension has configuration options:
columnar.chunk_group_row_limit, columnar.compression_level,
columnar.stripe_row_limit, columnar.compression, columnar.planner_debug_level
You can set options at the table level. The options can be viewed in the options view of the
columnar schema .
SELECT * FROM columnar.options;
-[RECORD 1]---------+--------------
relation | perf_columnar
chunk_group_row_limit | 10000
stripe_row_limit | 150000
compression | zstd
compression_level | 3

258Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the extension has parameters with the prefix " columnar."
• Sequential writing to an ordered data table can improve

compression, significantly reducing the size of indexes and
the amount of data blocks to scan

• data is often ordered by time and called a "Time Series"
• The most efficient compression algorithm is zstd, it is

installed by default
• When reading small amounts of data, using indexes can be

more efficient

Columnar Storage: Parameters

Demonstration

Directory for temporary files
Moving a tablespace directory

259Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Directory for temporary files
• Moving a tablespace directory

Demonstration

Practice

Creating a database connection
Tablespace Contents
Sequence file
Moving a table to another tablespace
Moving a table to another tablespace using pg_repack
Using pgcompacttable
Columnar storage pg_columnar

260Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Creating a database connection
2. Tablespace Contents
3. Sequence file
4. Moving a table to another tablespace
5. Moving a table to another tablespace using pg_repack
6. Using pgcompacttable
7. Columnar storage pg_columnar

Practice

261Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Logging

5

Diagnostic log

The PostgreSQL message log is used to monitor and analyze instance activity. Instance processes can
generate messages about what they are doing. These messages are useful for:
1) problem diagnostics - whether processes encountered errors or unexpected situations
2) tuning and monitoring performance. For example, messages about long-running queries or long

table vacuuming
3) security audit. For example, logging the creation of sessions, granting privileges.
4) historical analysis of what happened when the instance was running. For example, at what time the

instance started and began accepting connections
5) analysis of query execution . For example, logging of query plans and command execution

statistics.
Messages from all processes are directed to a single log. Tantor Postgres has pgaudit and
pgaudittofile extensions that can be used to log security events to a separate file to avoid
cluttering the diagnostic log with security audit messages.

262Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• accumulates diagnostic messages from instance processes
• used for:

› diagnostics of problems
– Monitoring and performance tuning

› security audit
› historical analysis of what happened when the instance was running
› query execution analysis

Diagnostic log

postgres@tantor:~$ cat $PGDATA/log/postgresql-*.log
23:17:09.415 [784] LOG: database system is ready to accept connections
23:17:09.732 [791] LOG: autoprewarm successfully prewarmed 13763 of 13763 previously-loaded blocks
23:27:09.762 [786] LOG: checkpoint starting: time
23:27:19.982 [800] STATEMENT : select * from tickets1 where ticket_no='0005432020304';
23:27:21.200 [800] ERROR : index "tickets1_ticket_no_idx" contains unexpected zero page at block 3
23:27:21.200 [800] HINT: Please REINDEX it.

Message importance levels

In the PostgreSQL core code, the extension library code, and the plpgsql code, messages are marked
with severity levels .
Configuration parameter log _min_messages sets the messages of which importance levels will be

transferred to the diagnostic log (" log "). The default value is WARNING. This means that messages of
levels "more important" than WARNING will be logged: WARNING, ERROR, LOG, FATAL, PANIC . Valid
values and order of importance for this parameter are: DEBUG5 , DEBUG4 , DEBUG3 , DEBUG2 ,
DEBUG1 , INFO , NOTICE , WARNING , ERROR , LOG , FATAL, PANIC .
Configuration parameter client _min_messages sets the messages of which importance levels will

be transmitted to the client that created the session. The default value is NOTICE . This means that
messages of levels "more important" than NOTICE will be logged: NOTICE, WARNING, ERROR . The
possible values and order of importance for this parameter are: DEBUG5, DEBUG4, DEBUG3, DEBUG2,
DEBUG1, LOG, NOTICE, WARNING, ERROR .
The order of importance and the set of values for the two listed parameters differ .
There is no point in changing the default values.
plpgsql has the command RAISE {DEBUG, LOG, INFO, NOTICE, WARNING, EXCEPTION} 'format',

expressions USING parameter = value; to generate messages. The EXCEPTION level is similar to
ERROR, rolls back the transaction to an implicit savepoint before BEGIN and passes control to the
EXCEPTION section, if such a section exists. Example:
postgres=# DO $$ BEGIN
RAISE INFO 'info: %!', 'variable1' USING
DETAIL = 'info detail', HINT = 'info hint';
RAISE EXCEPTION 'text: %!', 'variable' USING ERRCODE = 'P0001',
DETAIL = 'error detail', HINT = 'error hint';

END; $$;
INFO: info: variable1!
DETAIL: info detail
HINT: info hint
ERROR: text: variable!
DETAIL: error detail
HINT: error hint
CONTEXT: PL/pgSQL function inline_code_block line 4 at RAISE

263Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• In the PostgreSQL core code, the extension library code, and the plpgsql
code, messages are marked with severity levels.

• log_min_messages sets the severity levels of messages that will be sent
to the diagnostic log
› Valid values and order of importance for this parameter: DEBUG5 , DEBUG4 ,

DEBUG3 , DEBUG2 , DEBUG1 , INFO , NOTICE , WARNING, ERROR,
LOG, FATAL, PANIC

• client_min_messages sets the messages of which importance levels
will be transmitted to the client that created the session
› Valid values and order of importance for this parameter: DEBUG5, DEBUG4,

DEBUG3, DEBUG2, DEBUG1, LOG, NOTICE, WARNING, ERROR

Message importance levels

postgres=# \dconfig *_min_messages
List of configuration parameters

Parameter | Value
---------------------+---------
client_min_messages | notice
log_min_messages | warning
(2 rows)

Расположение журнала

log_destination parameter allows you to specify a location, separated by commas, where
diagnostic messages will be output. Valid values are: stderr, csvlog, jsonlog, syslog . If there are several
locations, they will be output to all locations simultaneously. The default value is stderr, which means
that messages are output in text form to the standard error stream. If the instance is started via
systemd, then stderr is directed to the general linux log by default. If the instance is started by the
pg_ctl start utility , then stderr is output to the terminal. If the instance is started by the pg_ctl
start -l path_to_file utility, that is, with the -l or --log=path_to_file parameter
, then the log is directed to a file.
In industrial operation, the instance is started by systemd. It is not convenient to use the general linux

log, since it stores messages from instance processes mixed with messages from other operating
system processes, and it is convenient to use the logging_collector=on parameter.
logging_collector=on parameter starts the background process logger , which intercepts stderr

and directs messages to the log_directory directory , in which a file or files named
log_filename are created . In order for logging_collector to be able to log messages,
stderr and/or csvlog and/or jsonlog must be specified in log_destination . These values
specify the format of the log messages. The csvlog and jsonlog formats are not
created without logger . When stderr and/or csvlog and/or jsonlog are specified in
log_destination , a text file named current_logfiles is created in the PGDATA root ,
which records the location and current (where the recording is currently being made) names of the
diagnostic log files. An example of the contents of this file:
stderr log/postgresql-2025-12-25.log
csvlog log/postgresql-2025-12-25.csv
jsonlog log/postgresql-2025-12-25.json
log_filename parameter specifies the name of the log file or files. The default value is
postgresql-%Y-%m-%d_%H%M%S.log The file extension is valid for the stderr text format, for csv and
json the file extension (log) is replaced by csv and json. The mask in the default value (%H%M%S)
causes a file with a new name to be created each time the instance is started. A more convenient value
is postgresql-%F.log (%F is equivalent to %Y-%m-%d).
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-logging.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html

264Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• log_destination specifies the location where diagnostic messages will
be output.
› valid values: stderr, csvlog, jsonlog, syslog

• if there are several locations, they will be output to all locations at the same
time

• logging_collector=on starts a background process logger that
intercepts stderr and sends messages to the log_directory directory.

• in the root of PGDATA a text file is created with the name
current_logfiles , in which the location and current (where the
recording is currently going) names of the diagnostic log files are written

• log_filename specifies the name of the file (in log_destination one
value is stderr) or log files
› convenient value log_filename = postgresql-%F.log

Log location

Transferring syslog messages

Messages can be passed to the operating system's syslog service .
log_destination parameter can be set to syslog . Configuration parameters for syslog are:
postgres=# \dconfig syslog*
List of configuration parameters

Parameter | Value
-------------------------+----------
syslog_facility | local0
syslog_ident | postgres
syslog_sequence_numbers | on
syslog_split_messages | on
(4 rows)
Some types of messages may not appear in syslog output. For example, dynamic library linking error

messages, error messages when executing scripts specified in archive_command configuration
parameters. Therefore, it is recommended to use logger :
logging_collector=on;
log_filename=postgresql-%F.log
syslog is not reliable, it may truncate or lose messages, especially when they are needed. By default,
syslog flushes every message to disk, which reduces performance. To disable this
synchronous logging, you can add "-" before the file name in the syslog
configuration file .

265Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• when log_destination = syslog messages are sent to the operating
system service syslog

• Not all messages are output to syslog, all are output to logger
› logger is preferable - it does not lose messages

• Configuration parameters for interaction with syslog:

Transferring syslog messages

postgres=# \dconfig syslog*
List of configuration parameters

Parameter | Value
-------------------------+----------
syslog_facility | local0
syslog_ident | postgres
syslog_sequence_numbers | on
syslog_split_messages | on
(4 rows)

Rotate diagnostic log files

To prevent log files from growing, logger provides for their rotation. When using syslog, rotation is
configured in syslog. Parameters for configuring rotation:
postgres=# \dconfig *rotation*
List of configuration parameters

Parameter | Value
--------------------------+-------
log_rotation_age | 1d
log_rotation_size | 10MB
log_truncate_on_rotation | off
(3 rows)
log_truncate_on_rotation parameter allows time-based rotation (but not size-based rotation or

instance startup) to overwrite existing log files rather than appending to them. For example, if
log_filename=postgresql-%a.log and log_rotation_age=1d , then a separate file will be
created for each day of the week, and if log_truncate_on_rotation=on , then the files will be
overwritten once per day.
log_file_mode parameter sets permissions on diagnostic log files. The value 0640 will allow

members of the group to read the files. This parameter does not change permissions on the directory
where the files are located.
https://docs.tantorlabs.ru/tdb/en/17_5/se/logfile-maintenance.html

266Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When using logger, log files may be rotated
› old files are not deleted

• log_truncate_on_rotation parameter allows time-based rotation (but
not size-based rotation or instance startup) to overwrite existing log files
rather than append to them.

• log_file_mode parameter sets the permissions on the diagnostic log files
(default 0600)
› value 0640 will allow members of the postgres group to read the files

Rotate diagnostic log files

postgres=# \dconfig *rotation*
List of configuration parameters

Parameter | Value
--------------------------+-------
log_rotation_age | 1d
log_rotation_size | 10MB
log_truncate_on_rotation | off
(3 rows)

Diagnostic log

The PostgreSQL code contains function calls of the following type:
ereport(WARNING, (errcode(MESSAGE_CODE), errmsg("message text")));
The first parameter is the severity level (error level codes) . There are 15 levels defined in elog.h.
Enabling the log collector process:
logging_collector=on (default off). It is recommended to set the value to on. By default, messages

are sent to syslog and written in its format, which is inconvenient for analysis. With a large number of
messages that cannot be handled (the speed of writing to the file is lower than the speed of
generation), syslog does not write some messages (and it does the right thing), logger does not clear
the errlog buffer and the instance processes generating messages are blocked until logger writes
everything that has accumulated (which is also correct). In other words, logger does not lose
messages, which can be important for diagnostics. Such a situation can occur due to a failure in writing
to log files or enabling a high logging level.
If logging_collector=on , a background process logger is started , which collects messages sent

to stderr and writes them to log files.
The level of messages written to the cluster log is specified by the parameters:
log_min_messages , defaults to WARNING, which means logging messages with levels ERROR,
LOG, FATAL, PANIC .
log_min_error_statement , defaults to ERROR. Sets the minimum severity level for SQL statements

that fail with an error.
log_destination=stderr no need to change
log_directory=log (PGDATA/log) by default. Specifies the path to the log file directory. You can

specify an absolute path (/u01/log) or relative to PGDATA (../log).
The name of the current log file(s) is specified in the text file PGDATA/current_logfiles
Importance levels from most to least detailed for the log:
DEBUG5 DEBUG4 DEBUG3 DEBUG2 DEBUG1 for debugging
INFO messages, usually requested by the command option (VERBOSE)
NOTICE Helpful messages for customers
WARNING Warnings about possible problems
ERROR an error that caused the current command to be terminated
LOG messages useful for administrators
FATAL error due to which the server process was stopped (session ended)
PANIC stop server processes by main process

267Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• logging_collector (default off) recommended to set to on
• a background process logger will start , which collects messages

sent to stderr and writes them to log files
• log_min_messages=WARNING by default, which means logging messages

with levels ERROR, LOG, FATAL, PANIC
• log_min_error_statement= ERROR by default. Minimum severity level

for SQL statements that fail with an error.
• log_directory=log (PGDATA/log) by default. Specifies the path to the

log file directory, can be changed to a mount point, the speed and volume
of which are sufficient to receive logs. There are parameters that configure
the rotation of log files

Diagnostic log

psql -c " altern system set logging_collector = on; "
sudo systemctl restart tantor-se-server-16
ps -ef | grep logger
postgres 21861 21860 0 09:37 00:00:00 postgres: logger

Diagnostic parameters

What parameters can be used to monitor potential performance issues?
log_min_duration_statement='8s' all commands that take the specified amount of time or longer

to execute will be written to the log. If the value is zero, the execution duration of all commands is
written. By default, -1 does not write anything. It is recommended to set this to detect long-running
commands (they hold the database horizon); cases of performance degradation due to which the
execution duration of commands increases; problems with commands: for example, an index is no
longer used and the execution time of commands increases sharply. Example:
LOG: duration: 21585.110 ms
STATEMENT: CREATE INDEX ON test(id);
Duration and command are given.
log_duration=off logs the duration of all commands after their execution. Disadvantage: all

commands are logged (without text), one line per command. It is not worth enabling at the cluster level.
Advantage: the text of commands is not logged. The parameter can be used to collect statistics for all
commands, but for this you will need some program to process the log file to analyze the collected
data. It is not necessary to enable it for the entire cluster, the parameter can be enabled at any level.
Example:
LOG: duration: 21585.110 ms
log_statement=ddl what types of SQL commands will be logged. Values: none (disabled), ddl,
mod (what ddl plus dml commands), all (all commands). By default, none. It is recommended to set to
ddl. ddl commands usually set a higher blocking level, which increases contention. Using this
parameter, you can identify or exclude the execution of the ddl command as a cause of reduced
performance. Commands with syntax errors are not recorded by default. If you need to log commands
with syntax errors, you need to set log_min_error_statement=ERROR (or more detail). Do you need
to log commands with syntax errors? Commands do not load the server process, but can significantly
increase network traffic. The cause of errors may be in the application code, which continuously
repeats the command in a loop. You can periodically enable logging of erroneous commands. Example
of an entry with log_statement=ddl set :
LOG: statement: drop table test;

268Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• logging configuration parameters more than 35
• there are also more than 8 parameters for debugging SQL commands
• extensions can have logging parameters
• Main parameters:

Diagnostic parameters

alter system set logging_collector=on;
alter system set log_min_duration_statement='8s';
alter system set log_statement=ddl;
alter system set log_min_error_statement=ERROR;
alter system set log_temp_files='1MB';
alter system set cluster_name='main';
alter system set log_autovacuum_min_duration='10s';
alter system set log_disconnections=on;
alter system set log_connections=on;
alter system set log_lock_waits=true;
alter system set deadlock_timeout='60s';
alter system set log_recovery_conflict_waits=on;
select pg_reload_conf();

\dconfig *debug*
debug_assertions | off
debug_discard_caches | 0
debug_io_direct |
debug_logical_replication_streaming | buffered
debug_parallel_query | off
debug_pretty_print | on
debug_print_parse | off
debug_print_plan | off
debug_print_rewritten | off
jit_debugging_support | off
(10 rows)
\dconfig log*
log_autovacuum_min_duration | 10min
log_checkpoints | on
log_connections | off
log_disconnections | off
log_duration | off
log_error_verbosity | default
log_executor_stats | off
logging_collector | off
log_lock_waits | off
log_file_mode | 0600
log_filename | postgresql-
%Y-%m-%d_%H%M%S.log
logging_collector | on
log_hostname | off
logical_decoding_work_mem | 64MB
log_line_prefix | %m [%p]
log_lock_waits | off
log_min_duration_sample | -1
log_min_duration_statement | -1

Monitoring temporary file usage

Let's look at examples of using the diagnostic log and logging parameters.
If there are a lot of commands and the log is cluttered, you can use the log_min_duration_sample
and log_statement_sample_rate parameters . Parameter
log_transaction_sample_rate has a large overhead because all transactions are processed.
cluster_name = 'main' Empty by default. Recommended to set. The value is
appended to the name of the instance processes, making them easier to identify.
On a replica, wal_receiver is used for identification by default .

log_temp_files='1MB' logs the names and sizes of created temporary files at the time of their
deletion. Why at the time of deletion? Because the files grow in size and the size to which they have
grown is known only at the time of file deletion. How can I prevent files from growing? The size of
temporary files (including temporary table files) can be limited by the temp_file_limit parameter . If
the size is exceeded, the commands will return an error. Example:
insert into temp1 select * from generate_series(1, 1000000);
ERROR: temporary file size exceeds temp_file_limit (1024kB)
Setting temp_file_limit will help identify errors that cause the execution plan to be suboptimal,

such as not being able to use an index and instead sorting huge amounts of rows.
If the value is zero, files of any size are logged, and if the value is positive, files of a size not smaller

than the specified value are logged. The default value is -1, logging is disabled. It is recommended to
set log_temp_files to a relatively large value to detect the occurrence of commands that load the
disk system. The disk system is the most loaded resource in the DBMS.
LOG: temporary file: path "base/ pgsql_tmp /pgsql_tmp36951.0", size 71 835648
STATEMENT: explain (analyze) select p1.*, p2.* from pg_class p1, pg_class p2
order by random();
Temporary files are created in the directory of the tablespaces specified by the temp_tablespaces
parameter .
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-logging.html

269Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• cluster_name = 'main' Empty by default. Recommended to set. The
value is appended to the instance process name, making it easier to
identify. On a replica, wal_receiver is used to identify by
default.

• log_temp_files='1MB' (disabled by default) logs the names and sizes
of created temporary files when they are deleted

• if the value is zero, files of any size are logged
• temporary files are created in the directory of tablespaces specified in the
temp_tablespaces parameter
› can be limited by the temp_file_limit parameter
› It is recommended to set log_temp_files and temp_file_limit

• example of a message that the temporary file has grown to 97 MB :

Monitoring temporary file usage

STATEMENT: CREATE INDEX ON test(id);
LOG: temporary file: path "base/pgsql_tmp/pgsql_tmp137894.0.fileset/0.0",
size 101 810176

Monitoring the operation of autovacuum and autoanalysis

Logging is useful for monitoring the autovacuum.
log_autovacuum_min_duration , by default set to 10 minutes. If autovacuum exceeds this time

while processing the table, a message will be written to the cluster log. When such messages appear, it
is worth finding out the reason for the long vacuuming of the table.
The message is written to the log after the table and its indexes have been processed.
The message is written if " elapsed: " > log_autovacuum_min_duration
The total duration of processing the table and its indexes is specified in " elapsed: ". The value will

be greater than user + system . user and system are the CPU usage time. When vacuuming, processes
can send blocks for writing and wait for the I/O operation to be performed, without loading the CPU.
First of all, it is worth looking at " elapsed: " - this is the duration of the autovacuum transaction, i.e.

holding the horizon. For TOAST, there will be a separate entry about vacuuming (including aggressive)
in the log with its own indicators, like a regular table. There will be no entry about autoanalysis for
TOAST, since TOAST is not analyzed :
analyze pg_toast.pg_toast_25267;
WARNING: skipping "pg_toast_25267" --- cannot analyze non-tables or special system tables

Secondly, it is worth paying attention to the number of index scans: . A value greater than 1 indicates
that there was not enough memory to build the TID list. In this case, it is worth increasing the value of
the parameter:
alter system set autovacuum_work_mem='1000MB'; select pg_reload_conf();
Thirdly, the efficiency indicators of the autovacuum cycle are " tuples: " and " frozen: ".
" scanned " will be less than 100% if the blocks were cleared in the previous vacuum cycle, this is

normal.
The value of " full page images " (and " bytes " proportional to it) do not relate to the efficiency

of the vacuum and are determined by chance: how long ago the checkpoint was, or whether it is
necessary to increase checkpoint_timeout . Even the opposite, if the value " full page images "
are large, then this may explain a long cycle (the value in " elapsed: ") . Large values of " full page
images " and " bytes " together with " tuples: number removed " mean the efficiency of the
autovacuum cycle or that it has not processed the table for a long time (for example, it could not lock).
" avg read rate " and " avg write rate " I/O cannot be estimated because it may not be the

bottleneck.

270Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• log_autovacuum_min_duration , by default set to 10 minutes. If
autovacuum exceeds this time while processing a table, a message will be
written to the cluster log. When such messages occur, it is worth finding
out the reason for the long vacuuming of the table

Monitoring the operation of autovacuum and
autoanalysis

LOG: automatic vacuum of table "postgres.public.test": index scans: 37
pages: 0 removed, 88496 remain, 88496 scanned (100.00% of total)
tuples: 10000000 removed, 10000000 remain, 0 are dead but not yet removable
removable cutoff: 799, which was 0 XIDs old when operation ended
new relfrozenxid: 798, which is 2 XIDs ahead of previous value
frozen: 1 pages from table (0.00% of total) had 82 tuples frozen
index scan needed: 44249 pages from table (50.00% of total) had 10000000 dead item identifiers removed
index "test_id_idx": pages: 54840 in total, 0 newly deleted, 0 currently deleted, 0 reusable
avg read rate: 518.021 MB/s, avg write rate: 47.473 MB/s
buffer usage: 385747 hits, 1864788 misses, 170895 dirtied
WAL usage: 231678 records, 83224 full page images , 248448578 bytes
system usage: CPU: user: 25.72 s, system: 0.38 s, elapsed: 28.12 s

LOG: automatic analyze of table "postgres.public.test"
avg read rate: 498.808 MB/s, avg write rate: 0.018 MB/s
buffer usage: 2906 hits, 27199 misses, 1 dirtied
system usage: CPU: user: 0.42 s, system: 0.00 s, elapsed: 0.42 s

Monitoring checkpoints

log_checkpoints by default on since version 15 . It is not worth disabling, as it allows you to track
the frequency of checkpoints. More frequent checkpoints lead to a temporary increase in the load on
the journal system (WAL).
log_checkpoints creates log entries like this:
09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%);
0 WAL file(s) added, 0 removed, 6 recycled; write=269.938 s, sync=0.009 s,
total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s; distance=109699
kB, estimate=109699 kB; lsn=8/1164B2E8, redo lsn=8/BC98978
Как читать записи:
1) The first entry is written to the log when the checkpoint starts. There may be many entries between

this entry and the checkpoint end entry . The total value = 09:31:35.070 - 09:27:05.095
which is approximately 270 seconds, which is obtained by multiplying
checkpoint_completion_target * checkpoint_timeout (0.9*300=270). The number of blocks
that checkpointer should send for writing is calculated quite often, but towards the end of the interval
the I/O load may suddenly increase and checkpointer may not be able to do it in time. To minimize the
probability of not fitting into the interval between checkpoints (checkpoint_timeout), the default
value for checkpoint_completion_target is 0.9, which leaves a gap of 10% (0.1).
2) total = write + sync . sync is the time spent on fsync calls. A large sync time indicates increased I/O

load. These metrics apply to data files.
LOG: checkpoint complete: wrote 8596 buffers (52.5%); 0 WAL file(s) added, 0
removed, 33 recycled; write=25.057 s, sync=9.212 s, total=35.266 s; sync files=4,
longest=9.181 s, average=2.303 s; distance=540552 kB, estimate=550280 kB;..
3) sync files=15 (files synchronized) - the number of processed files whose blocks are located in

the buffer cache (relations). The checkpoint at the beginning writes blocks of slru cache buffers, but
their sizes are small. longest=0.003 s (longest_sync) - the longest duration of processing one
file. average=0.001 s - the average time of processing one file. These indicators apply to tablespace
files.

271Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the first entry is written to the log when the checkpoint begins
• total = 09:31:35.070 - 09:27:05.095

› approximately equals to 270 seconds, which is obtained by multiplying
checkpoint_completion_target * checkpoint_timeout (0.9*300=270)

• total = write + sync time of writing to WAL files
• sync= time spent on fdatasync calls on WAL files

• sync files=15 (files synchronized) - the number of data files (in tablespaces whose
blocks are located in the buffer cache) to which writing was performed and for which an
fsync call was sent at the end of the checkpoint

• longest=0.003 s (longest_sync) - the longest duration of processing one file

Monitoring checkpoints

09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%); 0 WAL file(s) added, 0 removed,
6 recycled; write=269.938 s, sync=0.009 s, total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s;
distance=109699 kB, estimate=109699 kB; lsn=8/1164B2E8, redo lsn=8/BC98978

LOG: checkpoint complete: wrote 8596 buffers (52.5%); 0 WAL file(s) added, 0 removed, 33 recycled;
write=25.057 s, sync=9.212 s, total=35.266 s; sync files=4, longest=9.181 s, average=2.303 s;
distance=540552 kB, estimate=550280 kB; lsn=9/16BC03F0, redo lsn=8/F82504B0

Описание записей log_checkpoints

log_checkpoints создает записи в логе такого вида:
09:22:05.087 LOG: checkpoint starting: time
09:26:35.066 LOG: checkpoint complete: wrote 3019 buffers (18.4%);
0 WAL file(s) added, 0 removed, 6 recycled; write=269.951 s, sync=0.009 s,
total=269.980 s; sync files=14, longest=0.004 s, average=0.001 s;
distance=99467 kB, estimate=108859 kB; lsn=8/AA004C8, redo lsn=8/5177990
09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%);
0 WAL file(s) added, 0 removed, 6 recycled; write=269.938 s, sync=0.009 s,
total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s; distance=109699
kB, estimate=109699 kB; lsn=8/1164B2E8, redo lsn=8/BC98978
Как читать записи (продолжение):
4) wrote 4315 buffers the number of dirty blocks written by checkpoint. Along with checkpointer,

dirty blocks can be written by server processes and bgwriter. (26.3%) is the percentage of the total
number of buffer cache buffers specified by the shared_buffers parameter . In the example 4315
/16384*100%=2 6.3366699%
5) file(s) added, 0 removed, 6 recycled number of created, deleted, recycled WAL segments

(by default, the size of each segment is 16 MB).
6) distance=109699 kB (distance) - the volume of WAL records between the start of the previous

checkpoint and the start of the completed checkpoint
select ' 8/BC98978 '::pg_lsn-' 8/5177990 '::pg_lsn; = 112332776 = 109699kB

272Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• wrote 4315 buffers number of dirty buffers written by checkpoint. At the
same time as checkpointer, dirty blocks can be written by server processes
and bgwriter

• (26.3%) percentage of the total number of buffer cache buffers specified
by the shared_buffers parameter

• file(s) added, 0 removed, 6 recycled number of created, deleted,
recycled WAL segments

• distance=109699 kB (distance) - the volume of WAL records between the
start of the previous checkpoint and the start of the current one

Description of log_checkpoints entries

09:22:05.087 LOG: checkpoint starting: time
09:26:35.066 LOG: checkpoint complete: wrote 3019 buffers (18.4%); 0 WAL file(s) added, 0 removed, 6
recycled;
write=269.951 s, sync=0.009 s, total=269.980 s; sync files=14, longest=0.004 s, average=0.001 s;
distance=99467 kB, estimate=108859 kB ; lsn=8/AA004C8, redo lsn=8/5177990
09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%); 0 WAL file(s) added, 0 removed, 6 recycled
;
write=269.938 s, sync=0.009 s, total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s;
distance=109699 kB , estimate=109699 kB ; lsn=8/1164B2E8, redo lsn=8/BC98978

Description of log_checkpoints entries (continued)

7) After checkpoint starting: the properties of the checkpoint are specified. time means that the
checkpoint was called "by time" after checkpoint_timeout . If the WAL size exceeds max_wal_size
the following message will be displayed:
LOG: checkpoint starting: wal
If the checkpoint for wal starts earlier than checkpoint_warning , the following message will be

displayed:
LOG: checkpoints are occurring too frequently (23 seconds apart)
HINT: Consider increasing the configuration parameter "max_wal_size".
23 seconds less than set checkpoint_warning= '30s'
For checkpoints after instance restart:
LOG: checkpoint starting: end-of-recovery immediate wait
8) estimate=109699 kB (distance that was expected) - updated by the formula:
if (estimate < distance) estimate = distance
else estimate=0.90*estimate+0.10*distance; (numbers are fixed in PostgreSQL code)
The estimate is calculated by the checkpoint code to estimate how many WAL segments will be used

at the next checkpoint. Based on the estimate , at the end of the checkpoint it is determined how
many files to rename for reuse and the rest to delete. How many files to delete is determined by the
parameters min_wal_size, max_wal_size, wal_keep_size, max_slot_wal_keep_size,
wal_init_zero=on, wal_recycle=on . File reuse should not be disabled, it is optimal for the ext4
file system. Other file systems (zfs, xfs, btrfs) should not be used. If zeros in " 0 WAL file(s)
added, 0 removed ", then estimate is correct. Such values should be most of the checkpoints. This
is the purpose of displaying the estimate value . The volume of log records between checkpoints is
distance .
9) Between checkpoints passed 09:27:05.095 - 09:22:05.087 = 300.008 seconds, which with

high accuracy equals checkpoint_timeout=300s

273Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• estimate=109699 kB (the distance that was expected) is calculated to
estimate how many WAL segments will be used at the next checkpoint

• if zeros in " 0 WAL file(s) added, 0 removed ", then estimate is
correct. The number of files to remove is determined by the parameters
min_wal_size, max_wal_size, wal_keep_size,
max_slot_wal_keep_size, wal_init_zero=on, wal_recycle=on

Description of log_checkpoints entries

09:22:05.087 LOG: checkpoint starting: time
09:26:35.066 LOG: checkpoint complete: wrote 3019 buffers (18.4%); 0 WAL file(s) added, 0 removed, 6
recycled;
write=269.951 s, sync=0.009 s, total=269.980 s; sync files=14, longest=0.004 s, average=0.001 s;
distance=99467 kB, estimate=108859 kB; lsn=8/AA004C8, redo lsn=8/5177990
09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%); 0 WAL file(s) added, 0 removed, 6
recycled;
write=269.938 s, sync=0.009 s, total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s;
distance=109699 kB, estimate=109699 kB; lsn=8/1164B2E8, redo lsn=8/BC98978

pg_waldump utility and log_checkpoints entries

The data about the last checkpoint is written to the control file. To view the contents of the control file,
use the pg_controldata utility :
pg_controldata | grep check | head -n 3
Latest checkpoint location: 8/1164B2E8
Latest checkpoint's REDO location: 8/ 0 BC98978
Latest checkpoint's REDO WAL file: 00000001000000080000000B
The zero after the slash ("/") is not printed; in the examples on the slide and below the slide, the zeros

were added manually.
The data corresponds to the last checkpoint entry in the log.
To view records in WAL files, use the utility pg_waldump . By default, the utility searches for WAL files

in the current directory from which it is launched, then in the directories ./pg_wal, $PGDATA/pg_wal .
An example of viewing a log entry about the end of a checkpoint:
pg_waldump -s 8/0B000000 | grep CHECKPOINT
or pg_waldump -s 8/BC98978 | grep CHECKPOINT
rmgr: XLOG len (rec/tot): 148/148, tx: 0,
lsn: 8/1164B2E8, prev 8/1164B298, desc: CHECKPOINT_ONLINE redo 8/ 0 BC98978 ;
tli 1; prev tli 1; fpw true; xid 8064948; oid 33402; multi 1; offset 0; oldest xid 723 in DB 1; oldest multi 1

in DB 5; oldest/newest commit timestamp xid: 0/0; oldest running xid 8064947; online

The utility does not specify an LSN to scan the log to (the -e parameter), so when it reaches the
very last log entry that was written to the log, the utility displays a message that the next entry is empty:
pg_waldump: error: error in WAL record at 8/1361C488: invalid record length at
8/1361C4B0: expected at least 26, got 0
In the log, output of the pg_controldata utility in LSN, leading zeros after "/" are not printed
pg_waldump output in lsn and prev zero is printed, but not printed in redo . Before the number 8,

zeros are also invisibly present, but their absence does not create confusion. You can remember that
after the slash there must be eight HEX symbols.

274Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• To view records in WAL files, use the pg_waldump utility . By default,
the utility searches for WAL files in " . " (the current directory from which it
is launched), then in ./pg_wal , $PGDATA/pg_wal

• in the log and output of pg_controldata in LSN leading zeros after "/" are
not printed

• pg_waldump output in lsn and prev zero is printed, but not printed in redo

pg_waldump utility and log_checkpoints entries

pg_controldata | grep check | head -n 3
Latest checkpoint location: 8/1164B2E8
Latest checkpoint's REDO location: 8/ 0 BC98978
Latest checkpoint's REDO WAL file: 00000001000000080000000B

pg_waldump -s 8/0B000000 | grep CHECKPOINT
rmgr: XLOG len (rec/tot): 148/148, tx: 0,
lsn: 8/1164B2E8, prev 8/1164B298, desc: CHECKPOINT_ONLINE redo 8/0BC98978;
tli 1; prev tli 1; fpw true; xid 8064948; oid 33402; multi 1; offset 0; oldest xid 723 in DB 1;
oldest multi 1 in DB 5; oldest/newest commit timestamp xid: 0/0; oldest running xid 8064947; online
pg_waldump: error: error in WAL record at 8/1361C488: invalid record length at 8/1361C4B0:
expected at least 26, got 0

09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%); 0 WAL file(s) added, 0 removed,
6 recycled; write=269.938 s, sync=0.009 s, total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s;
distance=109699 kB, estimate=109699 kB; lsn =8/1164B2E8, redo lsn =8/ 0 BC98978

pg_waldump utility and log_checkpoints entries (continued)

lsn 8/1164B2E8 , end of checkpoint record.
red 8/0 BC98978 record of the beginning of the checkpoint from which recovery will begin in the

event of an instance failure. The address of the record that was formed at the time of the beginning of
the checkpoint (redo) is selected from the record, this record is read. All records from redo to lsn must
be read and overlaid on the cluster files. After overlaying lsn The cluster files are considered consistent.
prev 8/1164B298 is the address of the beginning of the previous log entry. You can slide

"backward" through the log. However, the log entries do not contain the LSN of the next log entry.
Why? The address of the next log entry can be calculated by the len (rec/tot) field: 148/148 ,
which stores the length of the log entry. The minimum length of a log entry is 26 bytes (expected at
least 26). In this case, the actual length of the log entry is padded to 8 bytes. The actual length of
the entry in the example will be 152 bytes, not 148 . Example:
pg_waldump -s 8/1164B298 -e 8/1164B3E8
rmgr: Standby len (rec/tot): 76/ 76, tx: 0, lsn: 8/1164B298, prev 8/1164B240, desc:

RUNNING_XACTS nextXid 8232887 latestCompletedXid 8232885 oldestRunningXid 8232886; 1 xacts: 8232886
rmgr: XLOG len (rec/tot): 148/ 148, tx: 0, lsn: 8/1164B2E8, prev 8/1164B298, desc:

CHECKPOINT_ONLINE redo 8/BC98978; ...
rmgr: Heap len (rec/tot): 86/ 86, tx: 8232886, lsn: 8/1164B380, prev 8/1164B2E8, desc: HOT_UPDATE

...

lsn+len + padding до 8 байт = LSN начала следующей записи
The size of the journal entries can be determined from the log or control file entry. The recovery time

depends on it.
The amount of WAL written at a checkpoint is calculated from these fields:
select pg_wal_lsn_diff('8/1164B2E8','8/BC98978'); = 94054768 = 91850kB.
volume from the beginning to the end of the checkpoint is 91850 kB.
The volume from the beginning of the previous checkpoint to the beginning of the completed one, that

is, the distance between checkpoints:
select ' 8/BC98978 '::pg_lsn - ' 8/5177990 '::pg_lsn; = 112332776 = 109699kB
For calculations, you can use the pg_wal_lsn_diff function or the "-" operator, the results are

the same. To use the operator, you need to cast the string to the pg_lsn type .

275Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• lsn 8/1164B2E8 end of checkpoint record
• redo 8/ 0 BC98978 record of the start of the checkpoint from which

recovery will begin in the event of an instance failure
• prev 8/1164B298 address of the beginning of the previous log entry
• distance log size from start of previous checkpoint to start of completed

checkpoint ' 8/0BC98978 '::pg_lsn-' 8/05177990 '::pg_lsn

pg_waldump utility and log_checkpoints entries

pg_controldata | grep check | head -n 3
Latest checkpoint location: 8/1164B2E8
Latest checkpoint's REDO location: 8/BC98978
Latest checkpoint's REDO WAL file: 00000001000000080000000B

pg_waldump -s 8/0B000000 | grep CHECKPOINT
rmgr: XLOG len (rec/tot): 148/148, tx: 0,
lsn: 8/1164B2E8, prev 8/1164B298, desc: CHECKPOINT_ONLINE redo 8/BC98978;...

09:26:35.066 LOG: checkpoint complete: wrote 3019 buffers (18.4%); 0 WAL file(s) added, 0 removed, 6 recycled;
write=269.951 s, sync=0.009 s, total=269.980 s; sync files=14, longest=0.004 s, average=0.001 s;
distance=99467 kB, estimate=108859 kB; lsn=8/AA004C8, redo lsn=8/5177990
09:27:05.095 LOG: checkpoint starting: time
09:31:35.070 LOG: checkpoint complete: wrote 4315 buffers (26.3%); 0 WAL file(s) added, 0 removed,
6 recycled; write=269.938 s, sync=0.009 s, total=269.976 s; sync files=15, longest=0.003 s, average=0.001 s;
distance=109699 kB , estimate=109699 kB; lsn=8/1164B2E8 , redo lsn=8/BC98978

Connection logging

Logging connections to an instance is useful for detecting excessively frequent connections and short
sessions. There may be applications that operate in a connect-request-disconnect mode. The reason
for the existence of such applications is the use of scripting languages that were used to create html
pages. Each page was created by a single script. In the databases used by such applications, session
creation was an inexpensive operation in terms of resource use, since the database functionality was
fairly simple and designed for simple queries to single tables without authentication and access control.
In the PostgreSQL DBMS, when a session is created, a process is spawned in the operating system,
preparatory operations are performed (authentication, access rights verification, signal registration,
memory structure allocation), which is relatively labor-intensive. Spawning a session to execute a single
request is not optimal and leads to useless use of computing resources and memory. Oracle Database
uses the same architecture. Industrial applications use languages and architectures that use connection
pools at the application server level. PostgreSQL instance monitoring applications may connect to the
database every few seconds or tens of seconds, execute a few queries, and disconnect.
Connection logging allows you to identify such applications and monitoring systems. To do this, it is

enough to log each connection and its duration.
The second reason for using connection logging is the regulatory security requirements "connection

audit". Auditing is used to determine in case of hacking of the software system what data and when
was stolen in order to eliminate the consequences. For example, replacing payment card numbers or
access codes that were stolen. Therefore, connection auditing can be enabled constantly and this is a
given for the DBMS administrator.
The following parameters are used to log connections:
log_connections=on
log_disconnections=on
pgaudit.log_connections=on
pgaudit.log_disconnections=on

276Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• detects whether there are too frequent connections and short
sessions

• Spawning a session to execute a single request is not optimal
• The following parameters are used to log connections:
log_connections=on
log_disconnections=on
pgaudit.log_connections=on
pgaudit.log_disconnections=on

Connection logging

LOG: connection received: host=[local]
LOG: connection authorized: user=postgres database=db2 application_name=psql
FATAL: database "db2" does not exist
LOG: connection received: host=[local]
LOG: connection authorized: user=alice database=alice application_name=psql
FATAL: role "alice" does not exist

Параметр log_connections

The log_connections=on parameter records attempts to connect to an instance, authentication
attempts, and successful authentication in the cluster diagnostic log. The parameter may generate
multiple diagnostic log entries associated with a single connection. By default, the parameter is
disabled. The value can only be changed at the cluster level, although the documentation declares the
ability to change the value before establishing a connection, but this is incorrect.
Neither the role level nor the database level can set the parameter:
postgres=# alter user alice set log_connections = on;
ERROR: parameter "log_connections" cannot be set after connection start
To apply the value, simply reread the configuration:
alter system set log_connections = on;
select pg_reload_conf();
When attempting to connect to a non-existent default role, the log will contain the following line:
FATAL: role "fff" does not exist
When you enable this parameter , the following lines will be added:
LOG: connection received: host="10.0.2.15"
LOG: connection authorized: user=fff database=fff application_name=psql
FATAL: role "fff" does not exist
You can add attributes to the message using the log_line_prefix parameter , which can only be

set at the cluster level. To change the parameter, simply reread the configuration files. By default, the
parameter value is ' %m [%p] ' and the date, time, and process number in square brackets are added to
the message:
2035-01-01 11:01:01.924 MSK [1773081]
By adding the value %r or %h to the parameter log_line_prefix = ' %h ' you can add logging of

the IP address or name of the client node. The IP address will be present in each message:
10.0.2.15 FATAL: role "fff" does not exist

277Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• log_connections=on writes to the cluster diagnostic log
attempts to connect to an instance, authentication attempts, and
successful authentication

• the value can only be changed at the cluster level
• Neither the role level nor the database level can set the

parameter:

• example messages:

log_connections parameter

LOG: connection received: host="10.0.2.15"
LOG: connection authorized: user=fff database=fff application_name=psql
FATAL: role "fff" does not exist

postgres=# alter user alice set log_connections = on;
ERROR: parameter "log_connections" cannot be set after connection start

log_disconnections parameter

log_disconnections=on parameter writes one message to the diagnostic log when the server
process servicing the session stops. The message includes the session duration . By default, the
parameter is disabled. The value can be changed at the cluster level, and, unlike the log_connections
parameter , the log_disconnections parameter can be changed before creating a session at the
session level:
export PGOPTIONS="-c log_disconnections=on -c work_mem=5MB"
psql -h 127.0.0.1 -c "show work_mem;"
work_mem

5MB
You can also change the parameter by setting the connection property in the JDBC driver.
Example of a log message:
tail -n 1 $PGDATA/log/postgresql-*
LOG: disconnection: session time: 0:00:00.007 user=postgres database=postgres
host=127.0.0.1 port=34298
The value can be changed by a role with the SUPERUSER attribute or by a role that has been granted

privileges to change the parameter.
Neither the role level nor the database level can set the parameter:
postgres=# alter user alice set log_disconnections = on;
ERROR: parameter "log_disconnections" cannot be set after connection start
To apply the value, simply reread the configuration:
alter system set log_disconnections = on;
select pg_reload_conf();
The advantage of this parameter is that if a utility or client frequently connects to the database, you

can set an environment variable on the client node before starting it and disable logging of their
sessions. This reduces unnecessary messages in the cluster diagnostic log. The log_connections
parameter is not changed in this way, since it is used for security logging, and disabling logging of
connection attempts on the client side would be undesirable.

278Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• log_disconnections=on writes one message to the
diagnostic log when the server process servicing the session
stops

• The value can only be changed at the cluster level, as well as on
the client before establishing a connection:

• Neither the role level nor the database level can set the
parameter:

• example messages:

log_disconnections parameter

LOG: disconnection: session time: 0:00:00.007 user=postgres database=postgres
host=127.0.0.1 port=34298

postgres=# alter database postgres set log_disconnections = on;
ERROR: parameter "log_disconnections" cannot be set after connection start

export PGOPTIONS="-c log_disconnections=on"

pgaudit and pgaudittofile extensions

When using the log_connections and log_disconnections parameters , messages are written
to the cluster log. During production use, many other messages are written to this log. Logging
connections is not needed for routine analysis and clutters the general log, making it difficult to read
more important messages. It is desirable that logging of connections, ddl commands, and other
commands be performed not in the cluster log, but in a separate file or files.
Tantor Posgres has the pgaudit and pgauditlogtofile extensions , which can be used to

direct messages about session creation and duration to a separate audit file or files.
pgauditlogtofile extension redirects the records created by the pgaudit extension to a
separate file or files. Without it, the records go to the cluster log. The pgauditlogtofile extension
depends on the pgaudit extension and does not work without it. To use the extensions, you only
need to load two libraries :
alter system set shared_preload_libraries = pgaudit, pgauditlogtofile ;
Extension libraries register configuration parameters in the instance, which can be used to customize

what is logged and where. Extensions operate independently and in parallel with the cluster log and are
controlled by their own parameters, which are prefixed with " pgaudit. "
There are 18 parameters in version 16. 7 parameters are related to the pgauditlogtofile library ,

including the pgaudit.log_connections and pgaudit.log_disconnections parameters .
These parameters are similar to the PostgreSQL parameters of the same name and can create similar
records, but only in a separate audit file, not in the cluster log, which is a big advantage of these
parameters . The advantage outweighs the disadvantages in the form of the need to load two libraries
and the inconvenience of their use. Library parameters are set only at the cluster level, specifying these
parameters in an environment variable leads to an error and the inability to connect, unlike the standard
parameters: export PGOPTIONS="-c pgaudit.log_connections=off"
psql
psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: parameter "pgaudit.log_connections" cannot be changed now
pgaudit.log_disconnections parameter , unlike the log_disconnections parameter , cannot

be set when creating a session.

279Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pgaudit and pgauditlogtofile extensions can be used to
direct messages about session creation and duration to a
separate audit file or files

• For extensions to work, you need to download their libraries:

• Extensions operate independently and in parallel with the cluster
log and are controlled by their own parameters, which are
prefixed with " pgaudit. "

• pgaudit.log_connections and
pgaudit.log_disconnections parameters are similar to the
PostgreSQL parameters of the same name and can create similar
entries in a separate audit file

pgaudit and pgaudittofile extensions

alter system set shared_preload_libraries = pgaudit, pgauditlogtofile;

Configuring pgaudit and pgaudittofile extensions

The disadvantage of using extension parameters is that you need to set the pgaudit.log parameter
to at least 'misc' to create an audit log. But the value 'misc' forces the logging of DISCARD,
FETCH, CHECKPOINT, VACUUM, SET commands and bloats the audit log. With the default value ' none
', no log file is created. When set to 'role' and 'ddl', the parameters pgaudit.log_connections
and pgaudit.log_disconnections have no effect.
Installing the pgauditlogtoile extension with the command is useless because there are no objects in

the extension:
create extension pgauditlogtofile;
\dx+ pgauditlogtofile
Objects in extension "pgauditlogtofile"

(0 rows)
pgaudit extension includes two triggers and two trigger functions:
event trigger pgaudit_ddl_command_end
event trigger pgaudit_sql_drop
function pgaudit_ddl_command_end()
function pgaudit_sql_drop()
The substitution variable ' %F ' (or its equivalent %Y-%m-%d) in the audit log and cluster log names is

more convenient than the default value (%Y%m%d_%H%M) in that it does not create a separate file when
the instance is restarted. A new file is created once per day. Example of setting values:
alter system set pgaudit.log_filename = 'audit- %F .log';
alter system set log_filename = 'postgresql- %F .log';

280Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• seven parameters are related to
the pgauditlogtofile
library

• To create an audit log, you need
to set the pgaudit.log
parameter to at least 'misc'
› ' none ' - no audit log file is

created
› 'role' and 'ddl'
pgaudit.log_connections and
pgaudit.log_disconnections
have no effect

Configuring pgaudit and pgaudittofile extensions

postgres=# \dconfig pgaudi*
List of configuration parameters
Parameter | Value
--------------------------------+----------
pgaudit.log | none
pgaudit.log_autoclose_minutes | 0
pgaudit.log_catalog | on
pgaudit.log_client | off
pgaudit.log_connections | off
pgaudit.log_directory | log
pgaudit.log_disconnections | off
pgaudit.log_filename | audit-%F.log
pgaudit.log_level | log
pgaudit.log_parameter | off
pgaudit.log_parameter_max_size | 0
pgaudit.log_relation | off
pgaudit.log_rotation_age | 1d
pgaudit.log_rotation_size | 0
pgaudit.log_rows | off
pgaudit.log_statement | on
pgaudit.log_statement_once | off
pgaudit.role |
(18 rows)

Diagnostics of database connection frequency

log_disconnections=on logs the session termination event. The same information is logged as
log_connections plus session duration . The advantage is that one line is output, which does not
clutter the log. Allows you to identify short-term sessions. Short sessions lead to frequent spawning of
server processes, which increases the load and reduces performance:
LOG: disconnection: session time: 0:00:0 4 .056 user=oleg database=db1
host=[vm1]
In the example the session duration is 4 seconds.
log_connections=on writes to the log attempts to establish a session. The disadvantage is that for

many types of clients two lines are output to the log : the first line about determining the authentication
method (without a password, with a password), the second line - authentication. If a connection
balancer (pgbouncer) is not used, then before authentication a server process is spawned, this is a
labor-intensive operation. The parameter is useful for identifying problems when a client continuously
tries to connect with an incorrect password or to a non-existent database or with a non-existent role.
The disadvantage is that unsuccessful attempts differ only in an additional line :
LOG: connection received : host=[local]
LOG: connection authorized : user=postgres database=db2 application_name=psql
FATAL: database "db2" does not exist
LOG: connection received : host=[local]
LOG: connection authorized : user=alice database=alice application_name=psql
FATAL: role "alice" does not exist
log_hostname=off . It is not worth enabling, as it introduces significant delays in logging session

creation.

281Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• log_disconnections = on logs a session termination event. The same
information as log_connections plus the session duration is logged .
› the advantage is that one line is output, which does not clutter the log
› allows you to identify short-term sessions
› example of session duration message session 4 seconds:

• log_connections=on logs attempts to establish a session
› the disadvantage is that unsuccessful attempts are distinguished only by an

additional line :

Diagnostics of database connection frequency

LOG: connection received: host=[local]
LOG: connection authorized: user=postgres database=db2 application_name=psql
FATAL: database "db2" does not exist
LOG: connection received: host=[local]
LOG: connection authorized: user=alice database=alice application_name=psql
FATAL: role "alice" does not exist

LOG: disconnection: session time: 0:00:0 4 .056 user=oleg database=db1 host=[vm1]

Diagnostics of blocking situations

log_lock_waits=true . Disabled by default. Recommended to enable to receive messages in the
diagnostic log when a process waits longer than: deadlock_timeout='60s' . The default is 1 second,
which is too short and creates significant overhead on busy instances. It is recommended to configure
the deadlock_timeout value so that messages about waiting for a lock are rare. As a first
approximation, you can focus on the duration of a typical transaction (for a replica - the longest
request).
In version 15, the parameter log_startup_progress_interval='10s' appeared , which should not

be disabled (set to zero). If the startup process (performing recovery) encounters a long operation,
a message about this operation will be written to the log. Messages will allow you to identify either
problems with the file system or high load on the disk system. Example of startup process messages
during recovery:
LOG: syncing data directory (fsync), elapsed time: 10.07 s, current path: ./base/4/2658
LOG: syncing data directory (fsync), elapsed time: 20.16 s, current path: ./base/4/2680
LOG: syncing data directory (fsync), elapsed time: 30.01 s, current path: ./base/4/PG_VERSION

log_recovery_conflict_waits=on . By default, off . The parameter appeared in version 14 . The
startup process will write a message to the replica log if it cannot apply WAL to the replica longer
than deadlock_timeout . The delay can occur because the server process on the replica is executing
a command or transaction (for read repeatability) and is blocking WAL application due to the
max_standby_streaming_delay parameter (by default, 30s). Allows you to identify cases of
replica lagging. Effective on the replica, on the master you can set it in advance. It is recommended to
set to on .
LOG: recovery still waiting after 60.555 ms: recovery conflict on lock
DETAIL: Conflicting process: 5555.
CONTEXT: WAL redo at 0/3044D08 for Heap2/PRUNE: latestRemovedXid 744 nredirected
0 ndead 1; blkref #0: rel 1663/13842/16385, blk 0
The presence of conflicts can be seen in the presentation, but there is little detail:
select * from pg_stat_database_conflicts where datname='postgres';
datid|datname |tblspc|confl_lock|confl_snapshot| confl_bufferpin|deadlock
-----+--------+------+----------+--------------+----------------+--------
13842|postgres| 0 | 0 | 1 | 1 | 0

282Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• log_lock_waits=true . Disabled by default. Recommended to enable to
get messages in the diagnostic log when a process waits longer than:
deadlock_timeout

• deadlock_timeout='60s' . Default is 1 second, which is too low and
creates significant overhead on busy instances.

• log_startup_progress_interval='10s' should not be disabled
• log_recovery_conflict_waits=on . Defaults to off . The startup
process will write a message to the replica log if it cannot apply WAL to
the replica for longer than deadlock_timeout

• The presence of conflicts can be seen in the presentation (few details):

Diagnostics of blocking situations

LOG: recovery still waiting after 60.555 ms: recovery conflict on lock
DETAIL: Conflicting process: 5555.

select * from pg_stat_database_conflicts where datname='postgres';
datid|datname |tblspc|confl_lock|confl_snapshot|confl_bufferpin|deadlock
-----+--------+------+----------+--------------+---------------+--------
13842|postgres| 0 | 0 | 1 | 1 | 0

Practice

What information is included in the log?
Location of server logs
How information gets into the log
Adding csv format
Enabling the message collector

283Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. What information is included in the log?
2. Location of server logs
3. How information gets into the log
4. Adding csv format
5. Enabling the message collector

Practice

284Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Security

6

Users (roles) in a database cluster

In PostgreSQL, a role is the same as a user. A role is a shared cluster object. This means that once
created, a role is visible in any database in that cluster. A role is similar to a group in other security
systems.
Most objects (tables, procedures, functions, databases, schemas, etc.) must have one role that owns

the object. As long as a role has objects in its ownership, the role cannot be deleted. The owner of an
object can be changed.
Roles can have privileges (rights) to objects. For example, the privilege to create objects in a schema,

the privilege to insert rows into a table, or execute a procedure. Privileges in PostgreSQL are analogous
to object privileges in Oracle Database.
Roles have nine attributes (properties). Attributes can be changed after a role is created. A role can be

renamed. Attributes can be likened to system or administrative privileges (privileges to perform actions
without being tied to an object) in Oracle Database. For example, the SUPERUSER attribute is similar to
the SYSDBA administrative privilege in Oracle Database, and the BYPASSRLS attribute is similar to the
EXEMPT ACCESS POLICY system privilege.
Roles and schemas are different objects. Schemas are local database objects, roles are common

cluster objects.
Roles are created with the CREATE ROLE or CREATE USER command, deleted with DROP ROLE, and

changed with ALTER ROLE.
The difference between CREATE USER and CREATE ROLE is that the first command sets the LOGIN

attribute by default , while the second sets the NOLOGIN attribute :
postgres=# create user alice;
CREATE ROLE
postgres=# create role bob;
CREATE ROLE
postgres=# \du
List of roles
Role name | Attributes
-----------+------------------------------------
alice |
bob | Cannot login
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS
https://docs.tantorlabs.ru/tdb/en/17_5/se/database-roles.html

285Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• accumulates diagnostic messages from instance processes
• used for:

› diagnostics of problems
– Monitoring and performance tuning

› security audit
› historical analysis of what happened when the instance was running
› query execution analysis

Users (roles) in a database cluster

postgres@tantor:~$ cat $PGDATA/log/postgresql-*.log
23:17:09.415 [784] LOG: database system is ready to accept connections
23:17:09.732 [791] LOG: autoprewarm successfully prewarmed 13763 of 13763 previously-loaded blocks
23:27:09.762 [786] LOG: checkpoint starting: time
23:27:19.982 [800] STATEMENT : select * from tickets1 where ticket_no='0005432020304';
23:27:21.200 [800] ERROR : index "tickets1_ticket_no_idx" contains unexpected zero page at block 3
23:27:21.200 [800] HINT: Please REINDEX it.

Users (roles)

The list of cluster roles can be viewed with the \d u S or \d g S (u - user, g - group) command or
in the pg_authid table or the pg_roles view:
postgres=# \duS

List of roles
Role name | Attributes

-----------------------------+-------------------------------
pg_checkpoint | Cannot login
pg_create_subscription | Cannot login
pg_database_owner | Cannot login
pg_execute_server_program | Cannot login
pg_maintain | Cannot login
pg_monitor | Cannot login
pg_read_all_data | Cannot login
pg_read_all_settings | Cannot login
pg_read_all_stats | Cannot login
pg_read_server_files | Cannot login
pg_signal_backend | Cannot login
pg_stat_scan_tables | Cannot login
pg_use_reserved_connections | Cannot login
pg_write_all_data | Cannot login
pg_write_server_files | Cannot login
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS

postgres=# select * from pg_authid where rolname='postgres'\gx
-[RECORD 1]--+-----------------------------
oid | 10
rolname | postgres
rolsuper | t
rolinherit | t
rolcreaterole | t
rolcreatedb | t
rolcanlogin | t
rolreplication | t
rolbypassrls | t
rolconnlimit | -1
rolpassword | SCRAM-SHA-256$4096:oejDqb5wqdHcuVXBU0H/VA==...
rolvaliduntil |

There is also a pseudo-role public , which includes all cluster roles:
postgres=# drop role public;
ERROR: cannot use special role specifier in DROP ROLE
postgres=# create role public;
ERROR: role name "public" is reserved

286Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The list of roles can be viewed using the commands \d u S \d
g S

• The list of roles is stored in the global table pg_authid
• There is a pseudo-role public, which includes all roles

› she can be given privileges
• Attributes of the postgres role:

Users (roles)

postgres=# select * from pg_authid where rolname='postgres'\gx
-[RECORD 1]--+-----------------------------
oid | 10
rolname | postgres
rolsuper | t
rolinherit | t
rolcreaterole | t
rolcreatedb | t
rolcanlogin | t
rolreplication | t
rolbypassrls | t
rolconnlimit | -1
rolpassword | SCRAM-SHA-256$4096:oejDqb5wqdHcuVXBU0H/VA==...
rolvaliduntil |

Attributes (parameters, properties) of roles

LOGIN - the right to create an initial connection to databases. Having connected while in a session
with a database, you can switch in this session to the granted role with the SET ROLE command (return
to the initial role with the RESET ROLE command). The role to which you switch in the session may not
have the LOGIN attribute. You cannot change the database by switching to another role, this is only
possible by creating a new connection (in psql, the \connect command).
SUPERUSER - bypasses access rights checks except for the initial connection. Without the LOGIN

attribute, a role with the SUPERUSER attribute cannot connect to any database.
CREATEDB - the role can create databases. Having created a database, the role will become the

owner of the created database and will be able to delete this database. Only the owner or a role with
the SUPERUSER attribute can delete a database.
REPLICATION LOGIN - a role with these attributes (without the LOGIN attribute, the REPLICATION

attribute is useless) has the right to connect via the replication protocol and back up the entire cluster.
CREATEROLE - a role can create roles. Roles have no owner. The created role is granted by the

creator with the ADMIN OPTION. This option allows changing attributes (password, INHERIT,
CONNECTION LIMIT, VALID UNTIL), renaming, deleting a role granted with this option, granting and
revoking this role from others, changing configuration parameters that are set at the role level (ALTER
ROLE command name SET work_mem = '16MB'), changing the role description with the COMMENT
command, changing the SECURITY LABEL of this role. Therefore, by default, a role with the
CREATEROLE attribute can change and delete roles created by it. If a role has the SUPERUSER
attribute, only roles with the SUPERUSER attribute can delete it or change its properties. A grant with
the ADMIN OPTION does not give the right to change the CREATEROLE, BYPASSRLS, REPLICATION,
CREATEDB, SUPERUSER attributes. A role can change these attributes for roles for which it has ADMIN
OPTION only if it has the same attribute. It is difficult to remember these rules. It can be considered that
neither the WITH ADMIN grant nor the CREATEROLE attribute allow you to elevate your role's privileges
by creating and switching to the created role.
BYPASSRLS - a role with this attribute is not affected by Row Level Security policies.
CONNECTION LIMIT - number of sessions (initial connections). By default, the number of sessions is

unlimited (value -1).
VALID UNTIL '2030-11-01' - forty validity periods of a timestamp with time zone password.

287Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• there are 7 attributes of the type on/off
• LOGIN - the right to create an initial connection to databases
• SUPERUSER - bypasses permission checks except for initial connection
• REPLICATION LOGIN - a role with these attributes (without the LOGIN

attribute, the REPLICATION attribute is useless) has the right to connect via
the replication protocol and reserve the entire cluster

• CREATEROLE - a role can create roles
› roles have no owner
› the created role is granted to the creating role with the ADMIN OPTION
› neither the WITH ADMIN grant nor the CREATEROLE attribute allow you to

elevate your role's privileges by creating and switching to the created role
• Grant with ADMIN OPTION does not give the right to change the attributes

CREATEROLE, BYPASSRLS, REPLICATION, CREATEDB, SUPERUSER
› a role can change these attributes for roles that have ADMIN OPTION only if it

has the same attribute

Attributes (parameters, properties) of roles

INHERIT and GRANT WITH INHERIT attribute

The INHERIT attribute is set by default. If a role is set to NOINHERIT, it will not inherit rights to specific
database objects from roles that are granted to it, and it will need to switch to the granted roles to work
with their object rights. If a role is set to NOINHERIT, it will stop inheriting by default the object rights
that are granted to the roles that it is a member of. However, this can be overridden by specifying the
WITH INHERIT option explicitly when granting the role with the GRANT ... WITH INHERIT true or WITH
INHERIT false command. Example:
postgres=# grant postgres to alice with inherit false, set true;
GRANT ROLE
postgres=# \connect postgres alice
You are now connected to database "postgres" as user "alice".
postgres=> set role postgres;
SET
postgres=# select current_user, session_user, current_role, user;
current_user | session_user | current_role | user
--------------+--------------+--------------+----------
postgres | alice | postgres | postgres
(1 row)
postgres=# grant postgres to bob with inherit true, set false ;
GRANT ROLE
postgres=# \connect postgres bob
You are now connected to database "postgres" as user "bob".
postgres=> set role postgres ;
ERROR: permission denied to set role "postgres"
SET false option does not allow you to switch to a role and gain the right to use its attributes (for

example, SUPERUSER).
The LOGIN, CREATEROLE, BYPASSRLS, REPLICATION, CREATEDB, SUPERUSER attributes are never

inherited . To use them, you must switch to a role that has this attribute using the SET ROLE command.
You can return to the original role with which the session was created using the commands:
RESET ROLE; SET ROLE NONE; SET ROLE initial_role;
https://docs.tantorlabs.ru/tdb/en/17_5/se/role-membership.html

288Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The INHERIT attribute is set by default.
• Allows inheritance of rights granted to database objects
• If you set the NOINHERIT attribute on a role, it will not inherit the privileges

of the roles that are given to it.
• When issuing a role, you can explicitly specify

› will the rights of the granted role work for the sessions of the grantee
› can a grantee switch to a grant role

Атрибут INHERIT и GRANT WITH INHERIT

postgres=# grant postgres to alice with inherit false, set true;
GRANT ROLE
postgres=# \c postgres alice
You are now connected to database "postgres" as user "alice".
postgres=> set role postgres;
SET
postgres=#
postgres=# grant postgres to bob with inherit true, set false;
GRANT ROLE
postgres=# \c postgres bob
You are now connected to database "postgres" as user "bob".
postgres=> set role postgres ;
ERROR: permission denied to set role "postgres"

Switching a session to another role and changing roles

The SET [SESSION | LOCAL] SESSION AUTHORIZATION role command switches the session to
another role. LOCAL is used only in an open transaction and switches the session until the transaction
ends.
The command can only be executed if the session was originally created (authenticated) by the

superuser. This command can be used to allow the superuser to switch the session to another user and
then switch back to the original superuser session.
postgres=# set session authorization alice;
postgres=> select current_user, session_user, current_role, user;
current_user | session_user | current_role | user
--------------+--------------+--------------+-------
alice | alice | alice | alice
postgres=> set role bob;
postgres=> select current_user, session_user, current_role, user;
bob | alice | bob | bob
postgres=> set role pg_checkpoint;
postgres=> select current_user, session_user, current_role, user;
pg_checkpoint | alice | pg_checkpoint | pg_checkpoint
postgres=> reset role;
postgres=> select current_user, session_user, current_role, user;
alice | alice | alice | alice
postgres=> reset session authorization;
postgres=# select current_user, session_user, current_role, user;
postgres | postgres | postgres | postgres
SET SESSION AUTHORIZATION cannot be used in the SECURITY DEFINER function .
The current user can be changed with the SET ROLE command . The object rights check is performed

for the current user. SET ROLE will switch to any role of which the role under which authentication was
performed is a direct or indirect member.
The names of the functions current_user, current_role, user are synonyms . These functions

are called without parentheses according to the SQL standard.
https://docs.tantorlabs.ru/tdb/en/17_5/se/functions-info.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-set-session-authorization.html

289Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• SET [SESSION | LOCAL] SESSION AUTHORIZATION role;
switches a session to another role

• The command can only be executed by the superuser.
› used to allow the superuser to switch session to another user and then

switch back to the original one
• The current user can be changed with the SET ROLE command.

› checking of rights to objects is performed for the current user

Switching a session to another role and changing roles

postgres=# set session authorization alice;
postgres=> select current_user, session_user, current_role, user;
current_user | session_user | current_role | user
--------------+--------------+--------------+-------
alice | alice | alice | alice
postgres=> set role bob;
postgres=> select current_user, session_user, current_role, user;
bob | alice | bob | bob
postgres=> reset role;
postgres=> select current_user, session_user, current_role, user;
alice | alice | alice | alice
postgres=> reset session authorization;
postgres=# select current_user, session_user, current_role, user;
postgres | postgres | postgres | postgres

Predefined roles

Before version 14, there were no predefined (predefined), i.e. service roles automatically created when
creating a cluster. There was only a public service role, which includes all users (roles) of the cluster.
These service roles cannot be deleted:
postgres=# drop role pg_checkpoint;
ERROR: cannot drop role pg_checkpoint because it is required by the database system
These roles can be granted by a role with the SUPERUSER attributes or by a role that has the WITH

ADMIN right to the role being granted.
The only member of the pg_database_owner role is always the current database owner role.
pg_database_owner can own objects and receive permissions on objects. It makes sense to grant
permissions to this role and make it the owner of objects, since when cloning a database or changing
the owner of a database, there will be no need to change privileges and ownership. The rights granted
to pg_database_owner (for example, in the template1 database) will be acquired by the creator of the
new database that clones it. By default, it owns the public schema , that is, the database owner
controls the use of the public schema in his database.
pg_signal_backend has the ability to execute the pg_cancel_backend(pid) and
pg_terminate_backend(pid) functions , which terminate the execution of commands or sessions
other than superuser sessions.
pg_read_server_files, pg_write_server_files, pg_execute_server_program give the

right to access files and run programs under the operating system user under which the instance
(postgres) is launched. For example, change the contents of the pg_hba.conf file or delete PGDATA
files.
pg_monitor, pg_read_all_settings, pg_read_all_stats, and pg_stat_scan_tables are

given to roles for monitoring and performance tuning.
pg_checkpoint has permission to execute the checkpoint command;
pg_maintain has permission to execute VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED
VIEW, REINDEX, LOCK TABLE commands on all objects, as if it had MAINTAIN permission on
those objects.
pg_read_all_data, pg_write_all_data have the right to read and change data of all objects

(tables, views, sequences), as if it had SELECT, INSERT, UPDATE, DELETE rights on these
objects and USAGE rights on all schemas.
https://docs.tantorlabs.ru/tdb/en/17_5/se/predefined-roles.html

290Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• appeared in PostgreSQL starting with version 14
• 15 roles plus the public pseudo-role
• can grant a role with SUPERUSER attributes or a role that has WITH ADMIN

permission on the role being granted
• service roles cannot be deleted
• useful to avoid giving

superuser privileges to perform
requested actions

Predefined roles

postgres=# \duS
List of roles

Role name | Attributes
-----------------------------+--------------
-
pg_checkpoint | Cannot login
pg_create_subscription | Cannot login
pg_database_owner | Cannot login
pg_execute_server_program | Cannot login
pg_maintain | Cannot login
pg_monitor | Cannot login
pg_read_all_data | Cannot login
pg_read_all_settings | Cannot login
pg_read_all_stats | Cannot login
pg_read_server_files | Cannot login
pg_signal_backend | Cannot login
pg_stat_scan_tables | Cannot login
pg_use_reserved_connections | Cannot login
pg_write_all_data | Cannot login
pg_write_server_files | Cannot login

Rights to objects

When an object is created, it is assigned an owner. The owner is the role whose permissions were
used to create the object. This can be current_user - the current role in which the session is running
or an inherited role (which was given with WITH INHERIT true). For most object types, by default, the
owner and superusers have permissions to the created object. For example, the right to delete this
object.
The right to modify or delete an object is an inalienable right of the object owner and cannot be taken

away or transferred. This right, like others, is inherited by roles that have been GRANT the owner role.
The owner of an object can be changed. This can be done by the superuser or the current owner of the
object using the ALTER command, but only if the owner can switch to the new owner role. Example:
postgres=# alter database demo owner to bob;
ALTER DATABASE
postgres=# alter database demo owner to public;
ERROR: role "public" does not exist
postgres=# revoke ALL on database demo from public;
REVOKE
postgres=# revoke connect on database demo from public;
REVOKE
REVOKE Team does not generate an error if there was no privilege being revoked.
The pseudo-role public cannot be assigned as the owner of a database.
The owner of an object can revoke the rights to his object. However, the owner can manage the rights

and grant himself the rights again.
To allow other roles to use an object, you must grant them rights to that specific object ("object

privileges").
Rights are granted (presented) and revoked by the GRANT and REVOKE commands.
Each type of object (database, table space, configuration parameter, table, function, sequence, etc.)

has its own set of rights.
The keywords used in the GRANT and REVOKE commands are: SELECT, INSERT, UPDATE,
DELETE, TRUNCATE, REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE,
USAGE, SET, ALTER SYSTEM, MAINTAIN .
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-priv.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-grant.html

291Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When an object is created, an
owner is assigned

• By default, the owner and
superuser have rights to the
created object.

• Other roles need rights
• Each type of object has its

own set of rights.
› The names of the rights are

given in the table
• Rights are granted and

revoked using the GRANT
and REVOKE commands.

Rights to objects
right types of objects

SELECT r LARGE OBJECT, SEQUENCE, TABLE (and
similar), COLUMN

INSERT a TABLE, column

UPDATE w LARGE OBJECT, SEQUENCE, TABLE, COLUMN

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES x TABLE, COLUMN

TRIGGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTION, PROCEDURE

USAGE U DOMAIN, FDW, FOREIGN SERVER,
LANGUAGE, SCHEMA, SEQUENCE, TYPE

SET s PARAMETER

ALTER SYSTEM A PARAMETER

MAINTAIN m TABLE

Viewing object permissions in psql

The list of psql commands is given in the table on the slide. For example, for databases:
postgres=# \l

List of databases
Name | Owner | Encoding | .. | Access privileges

-----------+----------+----------+----+-----------------------
demo | postgres | UTF8 | .. | postgres=CTc/postgres+

| | | .. | alice=C*c/postgres
The rights are displayed as a list of elements ("aclitem"), where each element represents:
to_who_was_given = privileges / who_gave
If there is nothing before the "=" sign, it means public - available to everyone.
The " * " after the letter means that the right is granted WITH GRANT OPTION .
The " + " at the end indicates that this is not the last item and the list continues on the next line.
Example of granting privileges:
postgres=# GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO alice, bob
WITH GRANT OPTION GRANTED BY postgres;
GRANTED BY , since only the current user can be specified. Granting a privilege on behalf of another

user is not implemented and is present for compatibility with the SQL standard.
WITH GRANT OPTION gives the recipient role the right to grant the received rights to other roles. The

pseudo-role public cannot be granted rights with GRANT OPTION .
There is no right to delete an object (DROP), since it cannot be revoked or given; it belongs to the role

that owns the object.
ALL PRIVILEGES or ALL for short means that all privileges allowed for the object type are

granted.
public pseudo-role is given privileges by default on databases (Temporary - create temporary tables

and other temporary objects , connect - connect), routines (eXecute - execute) , languages (Usage -
create routines), data types, domains at the time of object creation.

292Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The rights are displayed as a list:
• to_who_was_given= privileges

/who_gave
• If there is nothing before the "=" sign, it

means public (available to everyone)
• The " * " after the letter means that the

right is granted WITH GRANT OPTION .
• The " + " at the end indicates that this is

not the last item and the list continues on
the next line.

Viewing object permissions in psql

Object type All rights
PUBLIC
Rights

psql
command

DATABASE CTc Tc \l

DOMAIN U U \dD+

FUNCTION ,
PROCEDURE

X X \df+

FDW U No \dew+

FOREIGN SERVER U No \des+

LANGUAGE U U \dL+

LARGE OBJECT rw No \dl+

PARAMETER sA No \dconfig+

SCHEMA UC No \dn+

SEQUENCE rwU No \dp

TABLE (and similar) arwdDxtm No \dp

COLUMN arwx No \dp

TABLESPACE C No \db+

TYPE U U \dT+

postgres=# \l
List of databases

Name | Owner | Access privileges
--------+----------+-----------------------
demo | postgres | postgres=CTc/postgres+

| | alice=C*c/postgres
postgres=# GRANT ALL PRIVILEGES ON ALL TABLES IN
SCHEMA public TO alice, bob WITH GRANT OPTION;
GRANT

DEFAULT PRIVILEGES

ALTER DEFAULT PRIVILEGES command allows you to set the rights that apply to objects that will be
created in the future. The command does not change the rights assigned to existing objects. You can
set DEFAULT PRIVILEGES for schemas, tables, views, external tables, sequences, routines, types
(including domains). You cannot set DEFAULT PRIVILEGES for functions and procedures separately:
FUNCTIONS and ROUTINES are considered equivalent for the command.
Recall that the public role receives the following rights: CONNECT and TEMPORARY (creation of

temporary tables) for databases; EXECUTE for functions and procedures; USAGE for languages, data
types, and domains. The owner of the object can revoke (REVOKE) these rights. It is more convenient
to use the ALTER DEFAULT PRIVILEGES command to automatically execute the REVOKE command,
which revokes privileges from the public role immediately after the creation of a subroutine and type
(applies to domains):
alter default privileges REVOKE ALL on routines from public;
alter default privileges REVOKE ALL on types from public;
The ALTER DEFAULT PRIVILEGES command can perform not only the revoke command, but also the

granting of privileges when creating an object.
To revoke privileges on databases and languages, you will have to use the REVOKE command:
revoke all on database demo from public;
revoke connect on database p2 from public;
\lList of databases

Name | Owner | .. | Access privileges
-----------+----------+----+-----------------------
demo | postgres | .. | postgres=CTc/postgres+

| | .. | alice=c/postgres
p2 | postgres | .. | =T/postgres +

| | .. | postgres=CTc/postgres
revoke all on language plpgsql from public;
\dL+ List of languages
Name | Owner | Trusted | .. | Access privileges

---------+----------+---------+----+--------------------
plpgsql | postgres | t | .. | postgres=U/postgres

https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-alterdefaultprivileges.html

293Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• ALTER DEFAULT PRIVILEGES allows you to set the privileges that apply
to objects that will be created in the future for schemas, tables, views,
external tables, sequences, routines, types (includes domains)

DEFAULT PRIVILEGES

alter default privileges REVOKE ALL on routines from public;
alter default privileges REVOKE ALL on types from public;
revoke all on database demo from public;
revoke connect on database p2 from public;
\l
List of databases
Name | Owner | .. | Access privileges
-----------+----------+----+-----------------------
demo | postgres | .. | postgres=CTc/postgres+

| | .. | alice=c/postgres
p2 | postgres | .. | =T/postgres +

| | .. | postgres=CTc/postgres
revoke all on language plpgsql from public;
\dL+

List of languages
Name | Owner | Trusted | .. | Access privileges

---------+----------+---------+----+--------------------
plpgsql | postgres | t | .. | postgres=U/postgres
(1 row)

• роль public получает права:
› CONNECT and

TEMPORARY (creating
temporary tables) for
databases

› EXECUTE for functions
and procedures

› USAGE for languages,
data types, domains

Защита на уровне строк (Row-level security, RLS)

Row-level security is disabled by default. Specifies a predicate (condition) by which access to rows is restricted
for users. In Oracle Database, a similar option is called Fine-grained access control (FGAC), controlled by a
package of procedures called DBMS_RLS. This is one of the "options for options", since similar functionality can
be implemented using views, which is simpler and more efficient. RLS is not Mandatory access control (MAC),
which restricts access using labels on each row. In Oracle Database, an option similar to MAC is called Label
Security, which was introduced in 1998 in version 8i. MAC does not add functionality and degrades performance,
and is used where formal data "protection" requirements must be implemented. RLS and MAC act in addition to
regular access rights (Discretionary access control, DAC). If regular access rights to the schema and table are not
present, then there will be no access to the table.
First, policies are created using the CREATE POLICY command. For example:
CREATE POLICY name ON table AS PERMISSIVE FOR ALL TO role USING (predicate);
The functions in the predicate are executed with the rights of the user executing the query.
There can be multiple policies, they can be PERMISSIVE and/or RESTRICTIVE and can be combined with AND

and OR.
Next, RLS is enabled at the table level with the command:
ALTER TABLE name [ENABLE | DISABLE | FORCE |NO FORCE] ROW LEVEL SECURITY;
You can use the wildcard character "*" in the table name.
If RLS is enabled with the ENABLE option, then RLS applies to everyone except the owner and roles with the

SUPERUSER or BYPASSRLS attribute. If RLS is enabled with the FORCE option, then RLS also applies to the table
owner. If RLS is enabled and there are no permitting policies, then access is denied.
RLS does not apply to integrity constraint checks. This means that there are indirect ways to check for the

existence of a row. For example, you could try to insert a duplicate value into a column that forms a primary key.
If an error occurs, you can infer that the row exists.
A complex structure of policies and access rights violates the principle of security: ease of use by

administrators. Complex structures create a false impression of security and increase the likelihood of errors that
create gaps in protection.
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createpolicy.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/ddl-rowsecurity.html

294Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• disabled by default
• RLS is not mandatory access control (MAC)
• If RLS is enabled and there are no permitting policies, then access is denied
• policies are created with the CREATE POLICY command, for example:
CREATE POLICY name ON table AS PERMISSIVE FOR ALL TO role
USING (predicate);
› There can be several policies on the table, they can be PERMISSIVE and/or

RESTRICTIVE and can be combined with AND and OR
• RLS is enabled at the table level with the command:
ALTER TABLE name [ENABLE | DISABLE | FORCE |NO FORCE] ROW
LEVEL SECURITY;

• enable with ENABLE option:
› RLS applies to everyone except the owner and roles with the SUPERUSER or

BYPASSRLS attribute.
• RLS does not apply to integrity constraint checks.

› integrity constraints cannot be violated

Row-level security (RLS)

Connecting to an instance

When connecting to an instance initially, the client is authenticated. The initial authentication
parameters are set in two text files , pg_hba.conf (host-based authentication) and pg_ident.conf
(identification, user name mapping file).
The location of the files can be viewed using the hba_file and ident_file configuration parameters:
postgres=# \dconfig *_file

List of configuration parameters
Parameter | Value

--------------------------+---
config_file | /var/lib/postgresql/tantor-se-1c-17/data/postgresql.conf
enable_delayed_temp_file | off
external_pid_file |
hba_file | /var/lib/postgresql/tantor-se-1c-17/data/pg_hba.conf
ident_file | /var/lib/postgresql/tantor-se-1c-17/data/pg_ident.conf
ssl_ca_file |
ssl_cert_file | server.crt
ssl_crl_file |
ssl_dh_params_file |
ssl_key_file | server.key
(10 rows)
By default, the files are located in PGDATA and are created when the cluster is created.
Files are edited manually , there are no commands for editing them.
view the contents of the pg_hba.conf file in the pg_hba_file_rules view , which displays the

current contents of the file. The view is useful for checking if there are any typos in the file. If the
error column is not empty, then there is an error in the file line.
For changes in pg_hba.conf and pg_ident.conf to take effect, you need to reread the

configuration, for example, with the function
select pg_reload_conf();
Files can include the contents of other files using the i nclude, include_if_exists,
include_dir directives . For example:
include_dir /var/lib/postgresql/tantor-se-1c-17/direcrory
https://docs.tantorlabs.ru/tdb/en/17_5/se/client-authentication.html

295Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Initial authentication parameters are set in two files pg_hba.conf and
pg_ident.conf

• Files are edited manually
• pg_hba.conf file can be viewed in the pg_hba_file_rules view
• The location of the files can be viewed using the hba_file and ident_file

configuration parameters:

Connecting to an instance

postgres=# \dconfig *_file
List of configuration parameters

Parameter | Value
--------------------------+--
config_file | /var/lib/postgresql/tantor-se-1c-17/data/postgresql.conf
enable_delayed_temp_file | off
external_pid_file |
hba_file | /var/lib/postgresql/tantor-se-1c-17/data/pg_hba.conf
ident_file | /var/lib/postgresql/tantor-se-1c-17/data/pg_ident.conf

pg_hba.conf file

The file format is one record per line. Comments begin with the " # " symbol, empty lines are ignored.
A record can be continued on the next line by ending the line with the " \ " symbol (escape the
carriage return symbol \r). A record consists of several fields separated by spaces and/or tabs . Field
contents can be enclosed in double quotes.
Records are scanned from the beginning of the file to the end, records (lines) closer to the beginning of

the file take precedence : if the connection details fall under a record (line), then that line determines the
action, and subsequent lines are not scanned.
The PostgreSQL configuration files can include the contents of other files using the include,
include_if_exists, and include_dir directives . The path to a file or directory can be
specified as absolute or relative, and can be enclosed in double quotes. For the include_dir
directive , the contents of all files in the directory whose names do not begin with a period and end
with .conf will be included.
The include_dir is ambiguous. The order of entries is important. If there are multiple files in a

directory, the first file included will prevail. Files are included according to the C sorting rules: numbers
come before letters, and uppercase letters come before lowercase letters. The pg_hba_file_rules
view allows you to see the exact order of entries.
To connect to a database, a user needs permissions in pg_hba.conf and CONNECT privilege for the

database. Instead of listing user names in the file, it is easier to use CONNECT privilege for the
database, so as not to bloat the contents of the file. PostgreSQL has an inconvenience for
administrators: by default, CONNECT privilege is given to all users (public) and it is not possible to
disable it using DEFAULT PRIVILEGES.
select rule_number r, right(file_name, 11) file_name, line_number l, type, database, user_name

user, address, left(netmask, 15) netmask, auth_method auth, options opt, error from
pg_hba_file_rules;

r | file_name | l | type | database | user | address | netmask | auth | opt | error
---+-------------+-----+-------+----------+-------+-----------+-----------------+-------+-----+------
1 | pg_hba.conf | 117 | local | {all} | {all} | | | trust | |
2 | pg_hba.conf | 119 | host | {all} | {all} | 127.0.0.1 | 255.255.255.255 | trust | |

The view displays the contents of the file at the time the request is executed, and the file may not yet
be applied (re-read). The curly brackets are an array.

296Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• File format - one record per line
• A record consists of several fields separated by spaces and/or tabs.
• Field contents may be enclosed in double quotes.
• entries (lines) closer to the beginning of the file prevail, unlike

parameter files (postgresql.conf)
• The current contents of the file can be viewed through the view:

pg_hba.conf file

postgres=# select rule_number r, right(file_name, 11) file_name, line_number l, type, database, user_name
user, address, left(netmask, 15) netmask, auth_method auth, options opt, error from pg_hba_file_rules;
r | file_name | l | type | database | user | address | netmask | auth | opt | error
---+-------------+-----+-------+---------------+--------+-----------+-----------------+-------+-----+-------
1 | pg_hba.conf | 117 | local | {all} | {all} | | | trust | |
2 | pg_hba.conf | 119 | host | {all} | {all} | 127.0.0.1 | 255.255.255.255 | trust | |
3 | pg_hba.conf | 121 | host | {all} | {all} | ::1 | ffff:ffff:ffff: | trust | |
4 | pg_hba.conf | 124 | local | {replication} | {all} | | | trust | |
5 | pg_hba.conf | 125 | host | {replication} | {all} | 127.0.0.1 | 255.255.255.255 | trust | |
6 | pg_hba.conf | 126 | host | {replication} | {all} | ::1 | ffff:ffff:ffff: | trust | |
(6 rows)

Contents of pg_hba.conf

The entries in the file contain:
1) connection type:
local - "local" (from the same node) connection via UNIX socket. If you change the permissions on the

socket file, you can restrict access to the instance from local users of the operating system using the
unix_socket_permissions and unix_socket_group configuration parameters .
host - any (with or without encryption) connections via TCP/IP. Variations: hostnossl, hostssl,
hostgssenc (gss = kerberos, with encryption), hostnogssenc (kerberos without encryption).
2) database name:
all - all bases
sameuser - the database name matches the name of the role with which the connection will be

established
samerole (samegroup) - the database name matches the name of one of the granted roles
replication - connection via physical replication protocol (but not logical), the database name is

not specified via physical replication protocol
Database and user names can be specified separated by commas. If the name begins with a slash,

then the regular expression follows the slash. Names can be enclosed in double quotes. If the name
begins with the " @ " symbol, then it is followed by the file name, the contents of which are substituted
in this place. Several regular expressions and/or names can be specified, separating them with
commas.
3) user name (roles):
all - any name
+role - the plus symbol means any users who have the specified role
4) IP address:
for local is absent, for other connection types IPv4, IPv6, CIDR IPv4 are specified (the number of bits

in the network mask is separated by a slash)
all - all IPv4 and IPv6 addresses
0.0.0.0/0 - all IPv4 addresses
::0/0 - all IPv6 addresses
samehost - from the IP addresses of the host on which the instance is running

297Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• тип соединения:
› local - соединение через UNIX-сокет
› host - any (with or without encryption) connections via TCP/IP

• Database name:
› all - all bases

• replication - connection via physical replication protocol
• IP address with or without subnet mask:

› all - all IPv4 and IPv6 addresses
› samehost - from the IP addresses of the host on which the instance is running

Contents of pg_hba.conf

postgres@tantor:~$ tail $PGDATA/pg_hba.conf
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local sameuser all peer
local samerole all md5
host all all 127.0.0.1/32 trust
host db1,db2,@file1 +bob,@file2 10.0.0.0 255.0.0.0 scram-sha-256
host "/^db\d{2,4}$" /^.*desk$ samehost ident map=omicron
host all all all reject

Contents of pg_hba.conf (continued)

samenet - from the IP address in the subnet of the host on which the instance is running
The hostname or domain name can be specified, but is not recommended, as reverse name resolution

will be used, which will lead to delays in establishing connections.
5) Authentication method if the connection matches the previous record fields:
trust - establish a connection without checks, including a password.
reject - unconditional refusal of connection
peer - only for connections via UNIX socket. The client operating system user name must match the

name of the cluster role under which the connection is established. There is an optional parameter map
.
scram-sha-256 - checks a password that should be stored as a scram-sha-256 hash
md5 - checks the password, which should be stored as a scram-sha-256 or md5 hash
password - should not be used, as the password will be transmitted in clear text
gss - authentication via kerberos protocol. There are parameters map, krb_realm,
include_realm .
ldap - authentication by ldap server. There are 13 parameters and two bind modes.
cert - request an SSL certificate from the client, by default the role should match the CN, but this can

be overridden by the optional map parameter .
radius , pam , ident can also be used .
6) Authentication parameters (optional). Parameters are specific to authentication methods and are

specified in the format parameter=value.
map parameter refers to a line in the pg_ident.conf file .
https://docs.tantorlabs.ru/tdb/en/17_5/se/gauth-pg-hba-conf.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/client-authentication.html

298Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

postgres@tantor:~$ tail $PGDATA/pg_hba.conf
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local sameuser all peer map=map1
local samerole all md5
host all all 127.0.0.1/32 trust
host db1,db2,@file1 +bob,@file2 10.0.0.0 255.0.0.0 scram-sha-256
hostssl "/^db\d{2,4}$" /^.*desk$ localhost cert
host all all 1.1.0.0/16 reject

• authentication method:
• trust - establish a connection without checks, including a password
• reject - unconditional refusal of connection
• peer - the client operating system user name must match the role name,

there is an optional map parameter
• scram-sha-256 or md5 - check password
• gss - authentication via kerberos protocol
• ldap - authentication with ldap server
• cert - request an SSL certificate from the client

Contents of pg_hba.conf (continued)

pg_ident.conf name mapping file

For the peer, gss, ident methods , you can map the name returned by the authentication
service to the cluster role under which the client wants to establish a session.
pg_ident_file_mappings view allows you to view the current contents of a file:
postgres=# select map_number r, right(file_name, 13) file_name, line_number l,
map_name, sys_name, pg_username, error from pg_ident_file_mappings;
r | file_name | l | map_name | sys_name | pg_username | error
---+---------------+----+----------+----------+-------------+-------
1 | pg_ident.conf | 73 | map1 | astra | postgres |
2 | pg_ident.conf | 75 | map1 | astra | alice |
(2 rows)
postgres=# \! tail -n 4 $PGDATA/pg_ident.conf
MAPNAME SYSTEM-USERNAME PG-USERNAME
map1 astra postgres
astra can also connect with the alice role
map1 astra alice
MAPNAMEs are referenced by the map=map1 parameter in pg_hba.conf file entries.
The view displays the contents of the file at the time the query is executed, and the file may not yet be

applied (re-read). For changes in pg_hba.conf and pg_ident.conf to take effect, you need to re-
read the configuration, for example, with the function
select pg_reload_conf();
The file can include the contents of other files using the i nclude, include_if_exists,
include_dir directives .
https://docs.tantorlabs.ru/tdb/en/17_5/se/auth-username-maps.html

299Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

postgres=# select map_number r, right(file_name, 13) file_name, line_number l,
map_name, sys_name, pg_username, error from pg_ident_file_mappings;
r | file_name | l | map_name | sys_name | pg_username | error

---+---------------+----+----------+----------+-------------+-------
1 | pg_ident.conf | 73 | map1 | astra | postgres |
2 | pg_ident.conf | 75 | map1 | astra | alice |

(2 rows)
postgres=# \! tail -n 4 $PGDATA/pg_ident.conf
MAPNAME SYSTEM-USERNAME PG-USERNAME
map1 astra postgres
astra can also connect with the alice role
map1 astra alice

• For peer, gss, ident methods, you can map the name returned by the
authentication service to the cluster role under which the client wants to
establish a session.

• MAPNAME names are referenced by the map=map1 parameter in the
pg_hba.conf file entries

• pg_ident_file_mappings view allows you to view the current contents of
a file:

pg_ident.conf name mapping file

Practice

Create a new role
Setting attributes
Create a group role
Creating a diagram and table
Granting a table access role
Deleting created objects
Location of configuration files
View authentication rules
Local changes for authentication
Checking the correctness of the settings
Cleaning up unnecessary objects

300Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Create a new role
2. Setting attributes
3. Create a group role
4. Creating a diagram and table
5. Granting a table access role
6. Deleting created objects
7. Location of configuration files
8. View authentication rules
9. Local changes for authentication
10.Checking the correctness of the settings
11. Cleaning up unnecessary objects

Practice

301Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Physical backup

7a

Types of backups

A database cluster physically consists of files in a file system. An instance does not duplicate files, all
files are stored without duplicates. Losing any file can lead to data loss, which is usually not acceptable.
Files can be lost or damaged for various reasons. For example, an intruder or a program ("computer

virus") can erase cluster files. Disk mirroring will not help in this case. PostgreSQL has many backup
methods. The most optimal in terms of simplicity, cost, and fault tolerance for a typical cluster is to use
physical replication, which we will consider in a separate chapter.
Backup copies can be:

1)Hot - without stopping the instance.
2)Cold - if the instance is stopped correctly before the backup. Stopping the instance and performing
the backup means downtime, which is usually undesirable. However, it can occur in practice. The
cluster uses one or more mount points. If the file system supports snapshots, then on a stopped cluster
they can be made from mount points in a short time. The cluster downtime will be small.
3)Self contained. A set of files that is sufficient to start an instance and provide access to the data
image at the time the backup was made. Such copies may be created periodically (e.g. quarterly) and
stored (retained) for a certain period of time.
For hot physical backups, the concept of a consistent state means that the copy has journal data at the

time the backup ended. Cold backups are correctly considered consistent if the instance has been
stopped. A hot backup can be made consistent by rolling journal files (WAL logs) onto it before the
backup ended.
In either case, when a consistent copy starts, it will look for a log file containing a record of the

checkpoint pointed to by the control file (or backup_label file if present). If the log file is missing,
the instance will not start. Consistency only makes the instance start faster.
https://docs.tantorlabs.ru/tdb/en/17_5/se/backup-file.html

302Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Hot - no downtime, no instance shutdown, no interruption of
client sessions

• Cold - on a correctly (with final checkpoint) stopped instance
• Autonomous or self-sufficient

Types of backups

Incremental backups

Incremental backup is justified when a regular backup takes a long time or creates an increased load
on input/output. A long time can be considered, for example, if the backup does not have time to
complete during non-working hours (overnight). The idea of incremental backup is that a full backup is
created once and based on the fact that a small part of the data file blocks has time to change in a day
(or the desired intervals between backups), it is enough to backup only the changed blocks.
Starting with version 17, the backup utility pg_basebackup is called with the -i manifest
parameter or --incremental= manifest can create incremental backups. The parameter must
specify the path to the manifest file the backup relative to which the incremental backup will be
created . Both of these backups form a link in the backup chain.
To determine which blocks should be included in the incremental backup, the utility uses WAL

summaries, which are stored in the PGDATA/pg_wal/summaries directory . If the files are missing,
the incremental backup is not created and the utility returns an error.
A full backup is made once, and then an incremental backup is made once a day (or at another

frequency). The frequency is selected based on the volume of log files generated by the cluster during
this time. The volume of log files does not depend on the volume of the cluster. After creating any (and
incremental) copy, log files can be deleted, freeing up space.
The disadvantage of incremental backup is the greater complexity of the procedures. The greater the

complexity, the greater the likelihood of making a mistake during the recovery process and not being
able to restore the cluster.
Using an incremental backup means overlaying it with the pg_combinebackup utility on a full

backup. You can overlay several incremental backups on a full backup. pg_combinebackup checks
that the backups specified to it form a valid chain.
It is not recommended to disable checksum calculation, especially when using incremental backups.

303Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• can be useful if the cluster size is large
• increases the complexity of backup procedures, the

likelihood of error and the inability to restore the cluster
• Procedure:

› First, a full backup is created using the pg_basebackup
utility

› later, incremental backups are created using the
pg_basebackup utility with the -i manifest or --
incremental=manifest parameter

› For recovery, incremental backups are superimposed on the
full backup using the pg_combinebackup utility

• when creating incremental backups, the files in the
PGDATA/pg_wal/summaries directory are used

Incremental backups

What is reserved?

The cluster contains:
1)data files - binary files with a block size of 8Kb. They contain data of database objects, system
catalog and service files: control file, xact (clog) files, multitransactions, subtransactions and
others.
2)WAL or "write-ahead log" or simply "log" (legacy xlog). The word "log" can also be used to refer to
the text files of an instance's messages. In this chapter, we will use it to refer to the write-ahead log. It
consists of files of 16 MB by default. The log records changes to blocks of data files and, at checkpoint
frequency, can write complete images of the data blocks that have changed since the previous
checkpoint.
3)text parameter files and other binary and text files and directories located in PGDATA that are not
recognized by backup utilities as temporary.
The logic of backup is as follows. A copy of data files and other files is made. This can be done using

operating system utilities, but this is inconvenient, since it is necessary to provide for a checkpoint and
synchronization of cluster files or file systems (sync) on which the cluster files are located. It is worth
using the pg_basebackup utility or third-party utilities that automate both backup and recovery.
Then the logs created from the moment the checkpoint is completed before the backup and until the
very last moment while the instance is running are saved or transferred to a safe place (if you want to
recover to the last moment, and this is usually a necessary requirement for any important data). In this
way, "cluster file backups" and "log archive" are created.
https://docs.tantorlabs.ru/tdb/en/17_5/se/continuous-archiving.html

304Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• PGDATA directory
• tablespace directories
• Files known to pg_basebackup as temporary are not backed

up.

What is reserved?

Recovery procedure

Recovery:
1)detection of corruption. The instance may be terminated abnormally and the attempt to start it will fail.
Or it may continue to work, but generate errors when accessing some of the data. If the instance has
not been terminated, it will need to be terminated in emergency mode, since it is unlikely to be
terminated correctly.
2)Restore everything from the backup. If the cluster size is large, you can try to restore only those files
that are different. The only guarantee is calculating the checksums of each file and comparing them. If
the recovery utility has such modes, you can use them. Manual use, for example, rsync (in the
checksum calculation mode) can increase the recovery time, since it adds time for planning and
entering recovery commands ("think time"). It is optimal to have command files and simple instructions
in case of failures, this will reduce the recovery time by eliminating time for thinking and possible errors.
3)Start the instance. The startup process, having found the backup_label file in the PGDATA root, will
start restoring (rolling forward logs) from the LSN specified in it, and not in the pg_control file. Files are
applied in the strict order of their creation by the instance, gaps (absence of a file or damage to blocks
(they are recognized, since log blocks are protected by checksums) in its body are critical - they
cannot be crossed. Therefore, logs can be called a "chain" of log files (WAL segments), since damage
to a link in the chain breaks it. There are techniques for restoring with gaps, but you should not rely on
them. If there are no gaps, but the record cannot be applied to the data file (the file is missing), then the
roll forward also stops. Log records are applied to data blocks in a strict order. When applied, it is
checked that the record can be applied to the data block. By default, journals contain full images of
changed blocks (full_page_writes), and even if data blocks are damaged (torn "torn", split), they
can be restored.

305Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Stop instance
• Restore its contents from a full backup
• Apply incremental backups if they were created
• Launch instance

Recovery procedure

Pre-Write Log Files

The presence of log files from the checkpoint that is initiated at the start of the backup is critical for
recovery. How are log files stored?
The PGDATA/pg_wal directory is where the cluster instance processes write to the log files. The files

are not duplicated by the cluster instance. We can say that each WAL file in this directory is
represented in one instance (not a cluster instance, but a file instance). At any given time, there is a
current log file where the instance processes write (or the last file where they wrote, if the instance is
terminated). The size of this file is always equal to the size of other files (16 MB by default) because
when the next file is created, its size is immediately set. The size is set either (the wal_init_zero
parameter) by the command to write the last byte to a file of size wal_segment_size , or by
commands to write empty blocks up to the size wal_segment_size . This is necessary to reserve
space in the file system in advance and prevent the instance from running out of space, as well as for
fault tolerance and speed: changing the file size is an operation with file system metadata. Depending
on the mount settings, the file system can "log only metadata" (the word "log" refers to file systems,
they also have logic to protect against power failure), and if the file size changes frequently (the file
size in the file system is metadata), in the event of a power failure, the last blocks of the file will either
be lost, or the speed of writing to the file will be low.

306Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are located in PGDATA/pg_wal
• log files are not duplicated
• the size of the current log file is the same as the others
• server and background processes of the instance write to

the log files

Pre-Write Log Files

LSN (Log Sequence Number)

The log files are written to by the instance processes in variable-length records. The address of each
record is designated by a 64-bit "LSN" (Log Sequence Number), which is the log byte sequence
number since the cluster was created (the time when writing to the log began). The LSN can be said to
specify the "offset from the beginning of the log" or "position in the write-ahead log." The LSN can also
be said to be a monotonically increasing integer that points to a log record.
LSN values are present in many places: data blocks, the control file, and the log records themselves.

An LSN can be used to reconstruct the name of the log file that contains the record to which the LSN
points.
The very first file has the name 00000001 00000000 000000 01 . The name consists of three parts of

8 characters. Each number is 32-bit, written in hexadecimal form. The maximum number is FFFFFFFF
(32 ones in binary notation). The first number is the "time line" number (Time Line , TLI , time
branch, incarnation). This number is increased by one when the cluster instance opens after the
recovery procedure in order to prevent the log file from being erased, since recovery does not always
fall on the 16-megabyte boundary of the log, the LSN to which the cluster was restored may point to a
byte in the middle of the file. In this case, before recovery, the first half of the file contains the
necessary records, the second - bytes with the value zero.
When the maximum values are reached, there is no LSN wrap and no timelines. The maximum LSN

value is quite large: 16777216 terabytes.
Physically, writing to log files is done in 8-kilobyte blocks. The block size is specified by the

wal_block_size configuration parameter, which is set when building PostgreSQL and does not change.
Log records are protected by checksums.
The size of the log file (WAL segment), the size of the log block, TimeLineID are stored in the cluster

control file (pg_control), so knowing the LSN, you can determine the name of the file that contains
the variable-length record that the LSN points to.
https://docs.tantorlabs.ru/tdb/en/17_5/se/wal-internals.html

307Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The log can be thought of as a concatenated set of log files
(most of which have already been deleted) starting with the
very first file generated when the cluster was created.

• LSN - 64-bit monotonically increasing number indicating the
address (offset from the first byte of the first log file)
accurate to a byte in the cluster log

• Instance processes write variable length log records, LSN is
used to specify the address of the start of the log record

• physically, writing to files is done in 8Kb blocks
(wal_block_size)

LSN (Log Sequence Number)

Log file names and LSNs

Let's take a closer look at LSN. You may have wondered why the default log file size is 16MB?
In text form, which is used in message files, command options, and functions, LSN is represented as

two 32-bit numbers written in hexadecimal form (HEX), separated by a slash: XXXXXXXX / YY ZZZZZZ
. XXXXXXXX is the "higher" 32 bits of LSN. If the log file size is 16 MB (the default value), then YY is the
"higher" 8 bits of the "lower" 32-bit number. ZZZZZZ - offset in the 16-megabyte log file relative to its
beginning. Leading zeros are not output: 00000001 / 0A 000FFF will be output as 1 / A 000FFF ,
which complicates perception .
The maximum log file size is 1 GB, the minimum is 1 MB, and can take values in powers of two (16 , 32,

62, 128, 256 , 512 1024 MB). For example, if you set the log file size to 256 MB , the LSN will look like
XXXXXXXX / Y ZZZZZZZ . If 1 MB (such a small size should not be used because wal_buffers will
not be larger than 1 MB), then: XXXXXXXX / YYY ZZZZZ . Other file size values do not have such a
clear division by digits. The log file size determines the maximum size of the log buffer in the shared
memory of the instance, which is set by the wal_buffers parameter . By default, if the
shared_bufers size is greater than 512 MB , the log buffer is set to the maximum value of 16 MB
.
The size of the log files can be set when creating the cluster with
the initdb --wal-segsize=size utility or after creating the cluster with the pg_resetwal -
-wal-segsize=size utility .
The names of the log files also depend on the file size. For a size of 16MB , the format is: 0000000N
XXXXXXXX 000000 YY . The second 8 characters are the most significant 32 bits of the LSN, then 6
zeros , then 2 characters of the most significant 8 bits of the least significant 32-bit number. For a size
of 256MB , the format is: 00000001 XXXXXXXX 00000 YYY . The first 8 characters are the number of
the transition to a new timeline.

308Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• LSN is represented as two 32-bit numbers written in
hexadecimal (HEX) form, separated by a slash: XXXXXXXX /
YY ZZZZZZ

• XXXXXXXX - "senior" 32 bits of LSN
• YY - the "higher" 8 bits of the "lower" 32-bit number
• ZZZZZZ - offset in the 16-megabyte log file relative to its

beginning
• The log file size determines the maximum size of the log

buffer (wal_buffers)
• 0000000N XXXXXXXX 000000 YY - names of 16MB log files

Log file names and LSNs

Startup recovery process

During a full recovery, information about which log record was generated most recently before the
instance crashed is not written anywhere. The recovery process reads the log records sequentially and
if it sees that the next log record contains "garbage", it stops recovery. When reading the next record,
the recovery process first looks for the location where the size of the log record should be. If there is
an unrealistic value in this location, it stops recovery; if there is a real value, it looks for the location with
the checksum. If the checksum does not match, it stops recovery. An example of a message in the
instance message file:
LOG: invalid record length at CA/277E2A88: expected at least 26, got 0
The recovery process expected to see a number no less than 26 (the minimum size of a journal entry),

but saw zeros.
The recovery process can form the file name because it knows the timeline number, log block size, file

size, and LSN from the control file. When the timeline changes, text files 0000000 N .history with
information about timelines are created in the PGDATA/pg_wal directory . The log that
was formed on the previous timeline does not contain data about the new line, because the instance of
the previous timeline that formed the log file has stopped.

309Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• startup - the process of restoring cluster files using the
journal

• when changing the timeline, text files 0000000N .history
with information about timelines are created in the
PGDATA/pg_wal directory, they cannot be deleted
and will be backed up

• a new timeline appears if a restore was performed or a
replica became a master

• the purpose of timelines is to ensure that when you restore to
a point in the past, new log files do not overwrite the old ones
and that you can return to previous timelines

Startup recovery process

Functions for working with logs

Let's look at the description of useful functions for working with logs. The documentation contains
similar descriptions, but worded differently (it may even seem less clear).
pg_switch_wal() switches writing to a new WAL file, the old one is not written to, even though it

has the same size as the other log files.
pg_create_restore_point('text') creates a log record LSN with a text label. The function

returns the LSN of the beginning of this log record. The label can be specified in the
recovery_target_name parameter to specify that the logs should be rolled back to the record with the
label. If you create multiple labels with the same name, then the recovery will stop as soon as it
encounters a record with this label.
pg_walfile_name('LSN') returns the name of the WAL file in which a record with the specified LSN

should be found. The result is calculated based on the data in the control file.
pg_walfile_name_offset(LSN) shows not only the calculated file name, but also the offset in

bytes relative to its beginning.
pg_current_wal_lsn() shows the LSN of the last byte ("end") of the last log record written to the

current log file. Up to and including this LSN, processes in the operating system must see it written if
they are to read the log file.
pg_current_wal_flush_lsn() LSN of the last byte of the last redo log record that is considered to

be securely flushed (fsync or other method returned a result). Specifies the LSN up to and including
which redo log records should be flushed after a power failure.
pg_current_wal_insert_lsn() LSN of the last byte of the last log record that instance processes

wrote in the log buffer, and that log record may not have been written to disk yet. Used by instance
processes to determine the LSN of their record that they will start writing.
The command-line utility pg_waldump filename can be used to obtain a list of the LSNs of the

beginning of log records and their contents from a WAL file in text form.
pg_lsn is a data type. This data type has a cast of type 'literal'::pg_lsn , a subtraction

operator (or a function pg_wal_lsn_diff(LSN,LSN)), which can be used to get the difference in
bytes between two LSNs - the volume of log data.
https://docs.tantorlabs.ru/tdb/en/17_5/se/functions-admin.html#FUNCTIONS-ADMIN-BACKUP

310Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_switch_wal() switches writing to a new WAL file
• pg_create_restore_point('text') creates a LSN log entry with a

text label
• pg_walfile_name('LSN') returns the name of the WAL file that

contains the LSN record.
• pg_current_wal_flush_lsn() LSN of the end of the last redo log

record considered to be safely flushed
• pg_wal_lsn_diff(LSN,LSN) bytes between two LSNs

Functions for working with logs

Cold backup

A cold backup is a backup on a correctly stopped cluster. The result is an autonomous copy of the
cluster. Autonomous or self contained means that it contains all the files needed to start the instance
and provide access to the data.
Backup technique: the location of PGDATA , the tablespace directory (symbolic links in
PGDATA/pg_tblspc), the instance is stopped correctly, it is checked that the instance processes are
not left in memory and the found directories are copied by any utilities.
The features are described in detail in the documentation. For example, you can use file system

snapshots if it allows or perform preliminary copying, and after stopping the cluster, update the files
with the rsync utility in the checksum calculation mode. The main advantage of cold backup is
that simplicity is lost. It is more practical to backup a running cluster, for example, with the
pg_basebackup utility .
The created copy can be used with accumulated log files (log archive), for example, for a full

recovery.

https://docs.tantorlabs.ru/tdb/en/17_5/se/backup-file.html

311Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• the instance must be stopped gracefully
• pg_basebackup utility cannot backup cluster if instance is

down
• The operating system utilities cp, rsync, tar are used
• Copies the entire PGDATA and tablespace directories
• an offline copy is created on which an instance can be run
• advantage - simplicity
• the main disadvantage is the interruption of service to cluster

clients

Cold backup

Configuration parameter full_page_writes

By default, the full_page_writes parameter is enabled. This means that the entire contents (8 KB) of each
data block ("page") are written to the log the first time this block is changed (changed in the buffer cache buffer)
after each checkpoint. This is a large amount of data. Why is this amount of data needed? The block size is 8 KB,
and the block size of an HDD, SDD, or file system is not always 8 KB, but more often 4 KB. In the event of a
power failure, 4 KB may be written to a data block, and they are not duplicated, while the other 4 KB will not be
written and will remain from the previous version of the block. Such a block is called split or "torn". The checksum
in the block will not match and it will be considered damaged. The block may refer to a system catalog object and
the instance may not start.

Why is the first page change written to the journal, but not the second? Because recovery starts at the LSN of
the start of a checkpoint that was completed before the backup began. Entire block images are read from the
journal into the buffer cache (not from the data file), and changes from the journal are applied to them. If the
buffer cache is small, blocks are written to their places in the data files as needed. If a block were written on the
second change, then during recovery the journal would first record the block change and it would be read from
the data file, where it may be corrupted, the journal entry could not be applied, and recovery would stop with an
error like:
PANIC: WAL contains references to invalid pages

The recovery process does not know that a page image may be encountered later in the log. For such errors, you
can use ignore_invalid_pages=on (only if full_page_writes was enabled) in the hope that a full page image will
be encountered later. If full_page_writes=off , then you should not use ignore_invalid_pages .

The presence of full page writes allows you to not depend on whether the operating system flushes modified
pages of data files to disk from its cache, and this is a write cache, or on the order of block flushing. The
operating system can work with 4K blocks in its cache and write them in any order. If at least somewhere on the
way from the instance process to the disk sector (or SSD disk controller) a block smaller than 8K is used, then the
probability of getting a large number of broken blocks when the power is lost or the operating system crashes is
high and you should not disable the parameter.

When backing up from a replica, full_page_writes must be enabled on the master.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-wal.html#GUC-FULL-PAGE-WRITES

312Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• enabled by default
• protects against page torn
• It is not recommended to disable
• enabled for the duration of the backup using the

pg_basebackup utility
• when replica is backed up, it must be enabled on the master

Configuration parameter full_page_writes

Backup utility pg_basebackup

Creates a backup copy of the entire cluster on a running instance. Does not stop service, does not block user
sessions.

Creates a copy of the entire cluster. Cannot create a copy of individual databases or objects.
The utility connects to the instance via TCP or Unix socket. By default, it creates two connections via the

replication protocol, which does not have regular SQL commands, but does have commands for retrieving files
from the server file system. The first connection creates a backup, and the second connection starts transmitting
log files in parallel.

To connect to an instance via the replication protocol, you can grant individual permissions to cluster roles. The
utility is included in the standard delivery.

The utility creates a backup copy on the host it is running on by default. It can be run on a host other than the
host where the instance is running. The cluster will be backed up via a network connection.

During the backup, enables full_page_writes if the parameter was disabled.
By default, creates a temporary replication slot. When backing up, you should use temporary or permanent

replication slots so that while the backup is being created, the cluster does not delete the log files needed to
restore this backup.

After the backup is completed, the utility switches the log or waits for it to be switched, and accepts the log on
which the backup was completed. Only after receiving the log file on which the backup was completed is an
autonomous backup obtained.

Can perform backup by connecting to an instance serving a physical replica (copy) of the cluster without loading
the instance of the primary (master) cluster. This is called "backup offloading".

Since version 17, PostgreSQL can create incremental backups. A copy of the entire cluster is created; parts of
the cluster (individual databases, table spaces) cannot be backed up. To monitor the backup process, there is a
view called pg_stat_progress_basebackup .

Accepts files ("pull" mode) - this is safer , because if the host where the cluster is running is hacked, the
attacker will not be able to connect to the host with backups. Before destroying the cluster, attackers first search
for backups and erase them. The "push" mode (when the backup host connects to the host with backups) is not
safe . When using backup utilities that work in this mode, after the backup, you need to isolate the host with
backups from the network to avoid damage to the backups if the host where the backup cluster is running is
hacked. This is why you should not use the archive_command parameter to transfer logs ; instead, you
should use the pg_receivewal utility, which works in "pull" mode, just like the
pg_basebackup utility .

https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pgbasebackup.html

313Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• creates a backup copy of the cluster on a running instance
• It is not possible to create a copy of individual databases or

database objects, only the entire cluster
• uses replication protocol
• uses a more secure backup mode "pull" - accepts files,

rather than "push" - transfers files
• can create incremental backups

Backup utility pg_basebackup

Утилита pg_verifybackup

Why use this utility? If you want to check that the files in the backup were not damaged during
storage, and that the necessary log files for synchronization were received during the backup. The
probability of not receiving them is low, so there is no need to check the backups after their creation.
The utility does not provide guarantees, only test recovery and subsequent data unloading at the logical
level (pg_dump and pg_dumpall) provide them.
By default, pg_basebackup creates a manifest file (manifest_file). This is a text file in json format

with checksums for each backed up file using the CRC32C algorithm. The contents of the manifest
itself are protected by a checksum using the SHA256 algorithm. There is no need to change the
algorithms.
Should I disable the creation of the manifest file when backing up? No, I shouldn't. If I don't change

the algorithms, there is no extra load.
If the manifest file exists and has not been deleted, the pg_verifybackup utility can be used to

check that the files match the manifest, i.e. have not been damaged during storage. The utility
produces a report on missing, modified, and added files. The utility also checks the self-sufficiency
(autonomy) of the backup - whether it is possible to synchronize the backup copy at the time of backup
completion using the log files (if you did not refuse to back them up). The check is performed using the
pg_waldump utility , checking for the presence of the required log records in the backed up log
files. The list of required records was transferred by the instance to the pg_basebackup utility
during the backup and placed in the manifest file.
The utility does not check the files postgresql.auto.conf , standby.signal , recovery.signal

and their presence.
https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pgverifybackup.html

314Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• checks files in backups created by the pg_basebackup
utility

• calculates file checksums (CRC32C) and compares them
with the values in the manifest_file

• compares files with the list of files in the manifest file
• without manifest file it doesn't work
• Checks for the presence of log entries needed to

synchronize backup files - backup autonomy
• does not check files postgresql.auto.conf,
standby.signal, recovery.signal

pg_verifybackup utility

Magazine archive

A backup can be offline. To be able to restore from it to the latest point in time, you will need to roll the
log files onto this copy from the time the backup was created until the latest point. By default, the
cluster stores log files in the PGDATA/pg_wal directory for the purpose of restoring the consistency
of the cluster files after an instance crash, i.e., from the beginning of the last checkpoint. Log files can
be retained for a long time by configuration parameters, but the PGDATA/pg_wal directory may not
be the best place to store logs if it is an expensive storage device, or for protection against deletion by
attackers. Backups and logs should be stored on a host that is not accessible by the backup host, if
possible, to prevent an attacker from deleting the backups.
Methods for organizing a magazine archive:
1)the archive_command='command' parameter and archive_mode=on . This method has a
drawback - the current log file (to which the instance processes write) will only start to be copied when
the file is no longer current. If the current file is lost, then the data in it will be nowhere to be retrieved
and transactions will be lost. This is unacceptable.
2)pg_receivewal utility . This utility can receive log data without delay. The disadvantage is that you
need to automate the launch of the utility and restart it in case of failure.
3)use third-party extensions that automate backups. For example, the wal-g utility, which can transfer
log files via the S3 protocol.
4)use physical replicas. The wal_receiver process of a physical replica instance operates
according to the redundancy protocol and the same logic as the pg_receivewal utility .

315Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Methods for organizing a magazine archive:
• copying WAL segments with the command in the

archive_command parameter
• Receiving a stream of log records and storing them using the

pg_receivewal utility
• use of physical replicas
• using wal-g utility to transfer logs via S3 protocol

Magazine archive

No loss (Durability)

Logs can be retrieved from the "archive", but it is important for full recovery to roll forward records
from the most recent log file, which may not have had time to be transferred to the archive. Losing even
one committed transaction is usually unacceptable (Durability property from the ACID transaction
properties). Log archives do not guarantee that they contain all transactions, and the last log on the disk
of a damaged cluster may not be saved, for example, as a result of a disaster (fire, flood, destruction of
the building where the file storage systems are located). The log file in the PGDATA/pg_wal
directory should not be a "failure point". Using pg_receivewal and/or a physical replica with
confirmation of transaction commit will ensure that transactions are not lost in the event of a complete
loss of the cluster host with all disk systems (disaster).
Commit confirmation of transactions is configured by the synchronous_commit and
synchronous_standby_names parameters .
Mounting pg_wal on redundant storage systems can protect against disk failure, but will not protect

against an attacker who can erase the log file. In the latter case, one may ask: should I keep archives or
hold files in pg_wal? Technically, it is more convenient to keep archives than to configure file retention
in pg_wal. Also, copying to archives frees up space on the expensive high-speed device where pg_wal
is located . It is also worth considering that for security purposes, the cluster host must not have
access to backups and log archives. If an attacker gains access to the cluster host, the first thing the
attackers do is delete all backups. The hosts where the backups are stored should be physically
disconnected from the network (at the hardware level, network ports) after performing the backup so
that in case of full access to the software systems, the attacker cannot erase the backups and it would
be possible to recover.
Is a physical replica enough? If the master host is unstable, there is a theoretical possibility that
walsender will push a corrupted log record to the replica. Such a record could theoretically corrupt the replica.
To protect against this, you can use a replica with delayed (for several hours) application of log records. The
delay in application is set by the recovery_min_apply_delay configuration parameter on the replica.

316Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The redundancy architecture must ensure full recovery of
committed transactions.

• The backup architecture must protect against deletion of
backups in case of hacking of the host with the cluster
instance: the initiator of backups must be a host different
from the one on which the cluster instance is running

• The current log file should not be a single point of failure.
• Using pg_receivewal or a physical replica is a way to ensure

that there is no loss if the current log gets corrupted

No loss (Durability)

pg_receivewal utility

pg_receivewal utility connects via the replication protocol and receives a stream of log records as they are
generated on the instance and stores the received records in files. The file names and sizes are the same as
those generated by the instance. The utility calls the current file as name.partial to avoid confusion.
pg_receivewal accumulates log data in memory by default and saves it to a file when the file is closed. If you

want the utility to write received data without delay, you need to run the utility with the --synchronous
parameter . The same mode should be used if the utility will commit transactions in the synchronous commit
mode set by the synchronous_commit parameter. This parameter determines after completing which level of log
record processing the process will issue a COMMIT COMPLETE message to the client. Values:
remote_apply - not applicable to pg_receivewal , only physical replicas can commit a transaction. It is not
worth setting, since the transaction commit speed drops sharply.
on - the default value. The transaction is committed after pg_receivewal or the replica receives a response from

its operating system that it has written the log pages to disk (performed fsync)
remote_write - the pg_recievewal or wal receiver process of the replica has sent a command to its

operating system to write log blocks to disk. The operating system may hold them in its file system cache, and if
the power goes out, the blocks may be lost. This value is a reasonable choice if the probability of failure of the
primary host and then the backup is small, and the on value leads to performance degradation that cannot be
eliminated by other means (for example, the commit_siblings parameter or replacing fsync on the
pg_recievewal side)
local - the transaction is committed after writing to the local log file and fsync (the default method)
off - should not be set at the cluster level. Can be set by application developers at the session or transaction

level.
If synchronous_standby_names is not set, then it is equivalent to local and the current log is the single point of

failure.
The utility can compress the saved logs.
It is recommended to use a replication slot. Without a replication slot, the utility may not receive some of the log

files upon restart, in which case it will not be possible to go through the loss during recovery. The absence of
gaps in log records is important. When using a replication slot, the utility will request missing log files after restart.

https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pgreceivewal.html

317Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• connects via replication protocol
• accepts journal entries without delay
• It is recommended to use the replication slot
• can receive logs from both the master and the physical

replica
• scripts for autostart (systemd) are missing
• can compress log records
• the advantage is that it is the initiator of the connection,

which allows for security
• can commit transactions in synchronous commit mode
• gives the current log file the suffix .partial

pg_receivewal utility

Replication slot

When an instance is running, log records are generated and stored in log files. The cluster retains log
files for recovery purposes after an instance is shut down improperly. These are files that contain log
records from the start of the last completed checkpoint, and are retained unconditionally. You can also
configure the cluster settings to specify how many files will be retained and the conditions for deletion.
Replication slots are used to hold log files for physical and logical replication purposes, as well as

backup and replica creation.
Clients (pg_receivewal , pg_basebackup , walreceiver processes , logical replication
worker instances) connecting via the replication protocol can specify a replication slot name. The
presence of slots retains log files that were not received using those slots.
Slots are created and deleted by replication protocol commands and SQL functions and commands.

Physical replication slots are created on and are specific to the master cluster. Each replica uses its
own slot. A temporary slot exists only for the duration of a single replication session and holds logs only
for the duration of the session.
If LSN is not specified when creating a slot, it is set when the client first connects. If the client does not

accept log data (stops), the log files will be retained and fill all available space in the PGDATA/pg_wal
directory . To prevent this from happening, you should set a limit with the
max_slot_wal_keep_size parameter .
pg_replication_slots view contains a list of all replication slots that currently exist in the database

cluster, as well as their current state.
To create a physical or temporary physical slot, you can use the
pg_create_physical_replication_slot ('name') function.
To drop a slot pg_drop_replication_slot ('name').
https://docs.tantorlabs.ru/tdb/en/17_5/se/functions-admin.html#FUNCTIONS-REPLICATION

318Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• three types: physical, temporary physical, logical
• are used to hold log files
• If the client does not accept log data (stopped), then the log

files will be held and fill all the free space in the
PGDATA/pg_wal directory . To prevent this from
happening, you should set a limit with the
max_slot_wal_keep_size parameter

• pg_replication_slots view contains a list of all
replication slots.

Replication slot

Create a basic backup

pg_basebackup utility can create backups in plain and tar formats. We will not consider the second format,
everything written below refers to the plain format.

To create a backup, simply specify the directory with the -D directory or --pgdata=directory
parameter . If the directory does not exist, the utility will create it and all directories in its path, if they are
missing. If the directory exists, it must be empty, this protects against overwriting files that may be important. The
directory is created on the host where the utility is running.

If tablespaces were created in the cluster (PGDATA/pg_tblspc contains symbolic links), then the directories
that the symbolic links point to will be created. That is, the structure of the tablespace directories will be the same
on the cluster and the host where the backup is created. If the backup is created on the same host, then you will
need to specify the "mapping" - list the tablespace directories and where to back them up using the parameter:
-T from=to or --tablespace-mapping=from=to
All directories should be specified by their absolute paths, not relative ones. You can list extra directories, there

will be no error. If you do not specify any directory, an error will be issued that the directory is not empty.
Symbolic links located inside the pg_tblspc subdirectory of the backup directory will point to new directories.
-P or --progress parameter will show what phase of the backup the utility is in.
-r rate or --max-rate=rate parameter allows you to limit the rate at which data is backed up to reduce I/O

load. The range is from 32 KB/s to 1024 MB/s. The log transfer rate is affected only if the log transfer method is
fetch , which makes no sense to use.

At the beginning of the master backup, the utility initiates a checkpoint. By default, the checkpoint is performed
according to the value of the checkpoint_completion_target parameter in order not to load the
input/output, i.e. its duration can be estimated as checkpoint_timeout*checkpoint_completion_target . If
you want to perform the checkpoint as quickly as possible, you can use the -c fast or --checkpoint=fast
parameter.

The -t or --target parameter can (but does not need to) back up to a directory on the cluster host, or back
up "to nowhere" (--target=blackhole). The latter mode can be used to measure performance: what part of
the backup time is spent reading files.

The utility backs up directories and files that are unknown to it. Therefore, you should not store files in PGDATA
that you would not like to see in the backup, such as large message files.

The utility creates backup_manifest, backup_label files . The backup_label file contains the same
data as in the backup pg_control file .

The utility does not back up files that are known not to need backing up. Such files are described in the
documentation: https://docs.tantorlabs.ru/tdb/en/17_5/se/continuous-archiving.html

319Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_basebackup is best run on the host where the backup
will be stored (the backup host)

• -D parameter specifies the path to the directory
• by default creates two connections to two wal-sender
processes . The first connection transfers data files, the
second transfers logs

• You can limit the speed of the first connection backup
• initiates a checkpoint before copying begins
• creates backup_manifest and backup_label files

Create a basic backup

wal-g backup utility

WAL-G is an optional client application supplied with Tantor Postgres.
Used to back up the cluster and log files via the S3 protocol, which is also used by cloud file storage.

Software such as minio is available for internal network backup.
One of the utility's advantages is the ability to make incremental (also known as differential) backups.

In WAL-G, these are called "delta copies." They store file pages that have changed since the previous
backup.
Throttling is supported - limiting the speed of reading files and the speed of downloading to the

storage location, checking the integrity of files, setting the degree of parallelism for downloading and
uploading from the file storage.
Streaming of log records is not supported; logs are transferred via files (WAL segments).
Uses "push" mode - transfers files.
If the storage supports the S3 protocol and does not support network mounting (usually NFS), then
WAL-G may be useful.
https://docs.tantorlabs.ru/tdb/en/17_5/se/wal-g.html

320Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• additional client application supplied with Tantor Postgres
• Used to back up cluster and log files via S3 protocol
• supports creation of "delta copies" (incremental copies)
• Supports backup speed limit, file integrity check,

concurrency level setting for file upload and download

wal-g backup utility

Demonstration

Resizing WAL files

321Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Resizing WAL files

Demonstration

Practice

Create a basic cluster backup
Launching an instance on a cluster copy
Log files
Checking the integrity of the backup
Consistent backup
Deleting log files
Creating a log archive using the pg_receivewal utility
Synchronous transaction commit and pg_receivewal
Minimizing transaction data loss

322Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Create a basic cluster backup
2. Launching an instance on a cluster copy
3. Log files
4. Checking the integrity of the backup
5. Consistent backup
6. Deleting log files
7. Creating a log archive using the pg_receivewal utility
8. Synchronous transaction commit and pg_receivewal
9. Minimizing transaction data loss

Practice

323Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Logical backup

7b

Logical redundancy

Backup at the logical level in PostgreSQL is the formation of a text file or files (" dump ") that allow you
to recreate objects and their data, which do not differ from the application logic point of view from the
image of the objects being backed up. After recovery, the data and objects are in the state they were in
at the start of the dump. The file contains SQL commands or text, based on which SQL commands can
be generated.
Logical backup tools:
1) COPY TO command
2) psql command \copy to
pg_dump command line utility
pg_dumpall command line utility
5) Logical Copy Recovery Tools:
6) COPY FROM command
7) psql command \copy from
pg_restore command line utility
9) psql
The functionality of logical backup and recovery is determined by the parameters of these tools and is

detailed enough to suit any needs.

324Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• formation of a text file or files allowing to recreate objects
• Saves objects in the state they were in at the start of the

unload.
• The following utilities are used:

› pg_dump
› pg_restore
› pg_dumpall
› psql
› COPY command
› psql command \copy

Logical redundancy

Examples of use

Logical backup allows you to copy data and/or objects to another database on the same or another
cluster of the same or another version and manufacturer. Why would you want to do this?
1) To migrate to a new major version of PostgreSQL. If the unload and load times are acceptable, this is
the best way
2) Changing cluster or database parameters that cannot be changed without recreating the cluster or
database
3) To ensure that the data is not damaged. Only logical level unloading can guarantee this.
4) For simple dumping of the contents of a single database. Physical backup with pg_basebackup does
not allow dumping of databases separately.
5) Transfer data to other storage systems, such as DBMS from other manufacturers, or load data from
third-party sources
6) Get a text command file (script) to install the application.
7) Quickly and easily reserve objects and data at any level (cluster, databases, database objects, global
objects), obtaining a complete copy (at one point in time)

325Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Transition to a new major version
• Changing cluster parameters that do not change after cluster

creation
• Checking data integrity
• Getting script to recreate objects
• Reservation of objects
• Unloading a part of a cluster: a separate database, schema

contents and other objects

Examples of use

Comparison of logical and physical redundancy

Logical and physical backup have different purposes of use. Physical backup is used to be able to
restore data to the most recent point in time, i.e. without losing transactions. Logical backup is not able
to do this, it can only restore data to the moment of unloading. Therefore, logical backup should not be
considered as the only backup method.
Logical backup is useful for quickly creating a copy of a part of a cluster or transferring objects

between databases. Physical backup creates a copy of the entire cluster, and its size can be large.
One of the advantages of PostgreSQL logical backup is that the format of the created files ("dump") is

text with standard SQL commands, and not a proprietary binary format.

326Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Comparison of logical and physical redundancy

opportunity L F

dump the contents of a separate database + -

restoration of part of the objects + -

restore to an arbitrary point in time - +

does not depend on the version, build, or software
manufacturer

+ -

ensuring fault tolerance (Durability) - +

uses a replication protocol - +

network backup + +

ease of use + +

COPY .. TO command

Unloading features:
1)You can unload by specifying the table name (but not the view) or any SQL command that returns data: WITH,
SELECT (of any complexity), the VALUES command, commands with the RETURNING expression (INSERT,
UPDATE, DELETE). The command must be enclosed in parentheses, the table name is not required.
Usually, the table name is used if you need to unload all rows, or SELECT with the WHERE clause if you need to
unload some rows. The VALUES command is not very common, but it is a standard SQL command.
2)You cannot specify a view name in place of a table name, but you can use a view name in a SQL command.
3)There are ten parameters that can be used to configure the format and features of the unloading: encoding,
quotation symbols, escaping, how to handle NULL (empty values), whether to enclose the text in quotation marks,
whether to display the column names in the first line:
COPY table [(columns)]
| (SELECT|VALUES|.RETURNING)
TO 'file'|PROGRAM 'command'
| STDOUT
WITH (
FORMAT text | csv | binary
DELIMITER 'character'
NULL 'marker'
HEADER true | false
QUOTE 'character'
ESCAPE 'character'
FORCE_QUOTE (columns)|*
FORCE_NOT_NULL (columns)
FORCE_NULL (columns)
ENCODING 'encoding_name);

The options marked in blue are those that can only be specified when unloading, not loading into a table. Two
variations of the COPY command syntax are supported (for compatibility with PostgreSQL versions 9 and 7). The
syntax variations differ in the order of the keywords. You should know this, as you can find examples with this
syntax in books. The binary format can be processed faster than the text and CSV formats, but it is less portable
and you can only unload and load into the same data type, not within a family of types. The COPY command is not
part of the SQL standard and is specific to PostgreSQL.

https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-copy.html

327Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• used for highly efficient data unloading and loading into a
single table

• You can dump the contents of a table or the result of any
SQL command that returns data.

• The data is uploaded to:
a) a file in the server's file system
b) passed to the standard input (stdin) of the server's
command line utility
c) the standard output stdout. If the COPY command is called
over a network connection, the standard output is passed
over the network connection to the client program

COPY .. TO command

COPY .. FROM command

There are nine parameters that can be used to customize the format and features of the download:
COPY table [(columns)]
FROM 'file'|PROGRAM 'command'
| STDIN
WITH (
FORMAT text | csv | binary
FREEZE true | false
DELIMITER 'character'
NULL 'token'
DEFAULT 'expression'
HEADER true | MATCH
QUOTE 'character'
ESCAPE 'character'
ENCODING 'encoding_name)
[WHERE expression] ;

Options marked in blue are those that can only be specified when loading into a table, not when unloading.
•FREEZE marks rows as frozen during loading. In this case, there is no need to update blocks in the future for
freezing purposes. The table into which the data is loaded must have been created or truncated in the same
transaction in which the COPY command is executed.
•HEADER MATCH is used to check that the column names and their order in the first row of the loaded data and
in the table match. It can be used as an additional check that the columns are not mixed up during unloading and
loading.
•An optional WHERE clause can be specified. Subqueries cannot be used in this clause. The expressions do not
see the changes that the COPY command itself makes. This last point should only be taken into account if the
WHERE clause calls functions with a VOLATILE volatility level and you expect them to see changes, but they do
not.
•DEFAULT specifies a literal. If it is encountered in the input data, the default value set in the table definition will
be inserted. Analog: insert into .. values (.., DEFAULT, ...)

While the COPY command (both TO and FROM) is running, you can monitor its progress through the
pg_stat_progress_copy view .

psql has a \copy command . The \copy syntax is similar to COPY, but the actions are performed by the psql
utility. The difference from COPY is that psql on the host where psql is running works with the file, not the server
process. Since stdin and stdout are directed to the client when connecting over the network, the COPY command
can work with files on the client using I/O redirection.

https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-copy.html

328Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Loading is performed into one table
• Data is loaded from:

› file on the host where the instance is running
› standard output of an arbitrary executable program
› from standard input stdin

• During the loading process, you can immediately set the line
freeze flag

• An optional WHERE expression can be specified. Subqueries
cannot be used in the expression.

• pg_stat_progress_copy view - tracking the progress of
the command both during loading and unloading

COPY .. FROM command

psql \copy command

\copy is a psql command . The syntax of \copy is similar to the syntax of the COPY command ,
but the actions are performed by the psql utility . Differences from COPY :
1)\copy is typed on one line, COPY can be typed on multiple lines
2)\copy .. from in CSV format incorrectly handles single value in a row \. as the end of input and
the following lines does not load
3)COPY allows variable substitution, backtick expansion (the ` character). For \copy , the end
of the string is always treated as arguments to \copy , and neither variable substitution nor backtick
expansion is performed in these arguments.
4)Number of lines processed \copy .. to stdout does not display
5)copy ... to stdout directs the output to the same location as the output of psql commands. To
read/write psql's standard input/output, regardless of the source of the current command or the \o
option, you can use from pstdin or to pstdout
6)The psql utility works with the file on the host where psql is running . This is slower than the
server process working with the file. For large amounts of data, COPY is more efficient.
Because stdin and stdout are directed to the client when connecting over a network, the COPY

command can operate on files on the client using I/O redirection. Instead of \copy .. to , you can
use COPY ... TO STDOUT and terminate it with \g name or \g | program .
https://docs.tantorlabs.ru/tdb/en/17_5/se/app-psql.html#APP-PSQL-META-COMMANDS-COPY

329Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• \copy is a psql command
• the syntax is similar to the COPY command
• the command uses lower case and is case sensitive
• is typed in one line
• ";" at the end of the command is not necessary
• works with files where the psql utility is running, the COPY

command works with files through a server process on the
server host

• for large amounts of data COPY is more efficient

psql \copy command

pg_dump utility

pg_dump is a utility for creating a logical backup copy of the database contents. The utility connects to one
database in the same way as psql , uses regular SQL commands, sets the lowest level ACCESS SHARE locks ,
the same as the SELECT command . This lock is needed so that the objects being dumped are not deleted during
dumping. The only lock incompatible with ACCESS SHARE is ACCESS EXCLUSIVE . The utility dumps data
consistently, that is, at one point in time. The utility can dump data in parallel using several processes, while
consistency at one point in time is preserved. For this, the standard functionality is used - snapshot export. By
default, it uses the highly efficient COPY command for dumping, but it can also form a set of INSERT commands.
It can dump object definitions without data and vice versa. It has flexible settings that allow you to select in detail
which types of objects to dump.

Exports data in one of four formats:
1)plain - by default. A script with a set of SQL commands is generated. The psql utility is used for
loading . The main disadvantage is that you cannot specify multiple processes for simultaneous unloading.
2)custom - dumps in archive format, compressed by default. For restoration, the pg_restore utility is
used , which can read the generated files. You cannot dump in several streams, but you can restore. Can be
used with a pipe:
pg_dump -F custom parameters | pg_restore parameters
3)directory - creates a directory in which separate files and a table of contents file will be created for each
table and lob. The pg_restore utility is used for recovery. You can specify the number of threads that will
simultaneously unload data - this is the main advantage compared to the custom format. Recovery can also be
performed in several threads.
4)tar - similar to directory, but not parallelized or compressed. pg_restore is used for recovery . It has
no advantages over the directory format.
pg_dump executes SELECT statements at a low level .
Using a pipe allows you to direct stdout to stdin of the psql utility and reload data without creating a file, which

can save space in the file system.
By default, compression is used for custom and directory formats. Compression can significantly (tens of times)

slow down the download. You can use a faster algorithm - Z zstd or disable compression with the -Z 0
parameter.

https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pgdump.html

330Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• creates a logical backup copy (dump) of a database or part of it
• unloads data from one database consistently - at one point in time
• To unload data from tables, the default command is COPY
• exports in one of four formats: plain, custom, directory, tar
• directory format can be unloaded in several streams
• for custom and directory the -Z parameter can be used to select the

compression algorithm and level zstd, lz4, gzip, 0
• You can avoid creating a file and use a pipe :
pg_dump parameters | psql parameters
pg_dump -F c parameters | pg_restore parameters

pg_dump utility

Parallel unloading

The unloading time depends almost linearly on the volume of unloaded data. Since the data is processed at the
logical level during the unloading process, the bottleneck may be the CPU core that will be served by pg_dump .
To reduce the unloading time, unloading in several threads can be used. The unloading will be performed by the
server process and worker processes. One table can be unloaded by one worker process. Unloading in parallel
mode is possible only in the directory format. The other three formats are unloaded in one thread. The number of
threads should be specified by the -j N or --jobs=N parameter . During the unloading, N+1 sessions with the
database will be created. The server process servicing pg_dump will create a snapshot and export it. The worker
processes will use this snapshot so that the unloading is performed at the same point in time (is consistent).

In parallel mode, at the start of work, the server process requests ACCESS SHARE level locks for all objects
that will be unloaded by worker processes. This is done to prevent objects from being deleted while the unloading
is in progress. The number of such locks is limited by the value max_locks_per_transaction *
(max_connections + max_prepared_transactions) . If the number of objects (tables) being unloaded
exceeds this number, the server process will return an error about exceeding the number of locks and will
terminate without starting the unloading. In this case, you can calculate the number of tables planned for
unloading and increase max_locks_per_transaction on the primary cluster. On all replicas, the values of the
above parameters must be no less than on the master.

with the ACCESS SHARE mode are those that set the highest level lock - ACCESS EXCLUSIVE (exclusive
access). These are the VACUUM FULL, DROP, ALTER, TRUNCATE, LOCK IN ACCESS EXCLUSIVE MODE,
REFRESH MATERIALIZED VIEW commands , as well as commands that can set this lock for a short time at the
end of their work. If any session requests a lock on an object in exclusive mode, the lock request will be queued
and will not allow other sessions to obtain a lock on the object until the lock_timeout parameter , if it was set,
expires. Any attempt to access this object will be queued, following the exclusive lock. Since worker processes
use their own sessions, they request an ACCESS SHARE lock before unloading data from an object and
are queued following ACCESS EXCLUSIVE . To prevent infinite waiting, worker processes request a lock in
NOWAIT mode . If the worker process fails to obtain the lock, the entire unload will be terminated.

331Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• possible only in directory mode
• the number of worker processes is specified by the -j or --
jobs parameter

• will be interrupted if after the unloading has started
commands are given that set an exclusive lock on the objects
being unloaded

• During the unloading process, ACCESS SHARE locks are
set on all unloaded objects.

• If there are a large number of objects, you can increase the
values of the parameters max_locks_per_transaction,
max_connections

Parallel unloading

pg_restore utility

pg_restore restores a database or objects from a backup created by pg_dump in all modes except
text. Text mode creates a file that is executed by psql, not pg_restore .
Works in three modes:

1)If the -d name or --dbname=name parameter is specified , where the parameter value is the
database name or connection string, pg_restore connects to this database and restores the archive
contents to it. If you specify the key but do not specify the value, the PGDATABASE environment
variable will be used . If the variable is not specified, the operating system user name will be
taken as the database name. In this mode, loading into multiple sessions is possible for input dump files
in custom or directory format. The tar format does not support parallel loading. Parallel processes
perform the longest operations, such as loading data into tables and creating indexes.
2)If the -l or --list parameter is specified , a list of archive objects (TOC, table of contents) is
output. The list file can be edited to avoid loading some of the objects. The edited list file is passed
using the -L file or --use-list=file parameter.
3)If the -d and -l parameters are not specified, but -f is specified, a script with SQL commands is
created. The generated pg_restore script will correspond to the output of pg_dump in plain
format . The script is generated by a single process.
https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pgrestore.html

332Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• processes dumps in custom, directory, tar format
• plain text file from archives
• You can restore only object definitions without loading data by

specifying
the --schema-only parameter

• There is a specific option for loading using the "table of contents"
file (TOC, title of contents):
› generate archive contents file with

--list parameter
› comment out (delete, move) object lines
› download archive specifying contents --use-list
› objects not listed in the table of contents will not be loaded

pg_restore utility

pg_restore capabilities

pg_restore utility , which are specified by parameters.
1)-s or --schema-only option to restore only the object definitions without loading the data. You
can later load the data itself by specifying the --data-only option . This will load the table rows,
lo, and set the sequence values. It makes sense to use --disable-triggers to disable triggers
before loading the rows into the tables.
2)parameters --clean --if-exists before creating the object, the DROP IF EXISTS command is
generated . Without the second parameter, informational messages are output to stderr (usually
this is not required)
3)--create create a database. In the connection parameter -d you will need to specify any existing
database to issue the command to create a database and connect to it
4)--exit-on-error exit if an error occurs. By default, the utility continues to run and outputs the
number of errors at the end of the work.
5)-I name. Generate a command to create the specified indexes. You can specify the parameter
multiple times if you want to create multiple indexes.
6)to load the contents of not all, but only part of the schemes, you can use the -n or -N parameters
7)--no-owner do not restore ownership. Used if the set of roles in the cluster differs from those in the
original cluster.
8)-P restore only the specified routines (procedures and functions)
9)-t restore only the listed "relations" (tables, views, materialized views, sequences, external tables)
10)-T restore only the specified triggers
11)-x or --no-privileges or --no-acl do not generate GRANT, REVOKE commands
12)--section restore table sections
13)--no-tablespaces option allows you to strip CREATE commands of tablespace names. Objects
will be loaded into the default tablespace. This is used if the cluster does not have the tablespaces that
were in the original cluster.

333Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• you can restore only object definitions without loading data
• load objects of only part of the schemes
• do not restore ownership rights
• load into the default tablespace for the database
• restore part of partitions of partitioned tables
• restore only specified tables, indexes, views, sequences,

functions, procedures, triggers

pg_restore capabilities

pg_dumpall utility

Creates a script that allows you to restore the cluster image, i.e. all cluster objects in all databases and shared
objects. The script contains SQL commands, it can be executed in psql and restore all databases and their
contents.

The utility dumps the cluster's shared objects (roles, tablespaces, and permissions granted for configuration
parameters) and sequentially runs pg_dump for each database in the cluster in plain mode. Connecting requires
connecting to the instance multiple times for each database. If password authentication is used, you may need to
enter the password multiple times, so it is convenient to use authentication that does not require entering a
password.

The script does not contain a command to create a cluster. When running the generated script, psql must
connect to a cluster instance, which can be created using the initdb utility. It is also necessary that the tablespace
directories are located in the same paths as they were in the original cluster. It is not necessary to create the
tablespaces themselves - the commands to create tablespaces will be present in the script.

The utility dumps the contents of the cluster into one stream. pg_dump is launched sequentially and dumping
from different databases starts at different times. The contents of each database are dumped consistently - at
the time pg_dump is launched .

Using a pipe allows you to direct stdout to stdin of the psql utility and reload data without creating a file, which
can save space in the file system.

https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pg-dumpall.html

334Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Creates a single script that allows you to restore an image of the entire
cluster

• Unloads shared cluster objects
• Runs pg_dump in plain mode sequentially for all databases to be

dumped
• The script is text-based and contains SQL commands.
• The script can be executed in psql
• There is no command to create a cluster in the script, you need to

create a cluster, start an instance and specify any database for the
initial psql connection

• Most of the utility parameters refer to pg_dump, which the utility will
run

• unloads into one stream
• you can use pipe :

pg_dumpall parameters | psql parameters

pg_dumpall utility

pg_dumpall capabilities

The utility has many options, but most of them relate to the pg_dump utility , which will be run by
pg_dumpall .

The -g or --globals-only parameter allows dumping common cluster objects: roles and tablespace definitions. It
is used when you need to speed up copying the cluster contents: first, the roles and tablespaces are reloaded,
and then the dump is launched in parallel for each database in the desired mode. For example, in parallel:
pg_dump --format=directory --jobs=N
--clean generates DROP commands for databases, roles, tablespaces. Useful even with an empty cluster, as

the built-in postgres and template1 databases will be recreated and will have the properties that these databases
had in the original cluster (localization parameters). --if-exists is usually used with this switch.
-r or --roles-only dump only roles, without databases and tablespaces
-t or --tablespaces-only dump only tablespaces, without databases and roles
--exclude-database=pattern do not dump databases with names matching pattern
--no-tablespaces Do not add tablespace names to commands. With this option, all objects will be created in the

default tablespace.
Statistics are not downloaded and commands for their collection are not created. After downloading, you can

collect it without waiting for automatic collection.
--binary-upgrade option is intended for use by the pg_upgrade utility (with --globals-only or --
schema-only) to preserve the data file names of objects. Use for other purposes is not recommended or
supported.

335Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• has many parameters, most of them are pg_dump parameters
• you can only dump shared cluster objects

--globals-only
• you can only dump role definitions

--roles-only
• you can dump only tablespace definitions --tablespaces-only
• You can avoid unloading some databases

--exclude-database=template
• do not add tablespace names to commands

--no-tablespaces

pg_dumpall capabilities

Large size lines

The first problem
The text and bytea data types can store fields up to 1GB in size. During the unloading (COPY) or

processing of data by any commands, a buffer is allocated whose size cannot exceed 1GB. By default,
the COPY command outputs field values in text format. In this format, special sequences such as \r \t
\b are used for characters such as newline, tab, backspace , which occupy two bytes. In
this format, a field containing special characters can exceed 1GB. When unloading a field bytea in text
form, its size also increases and an error will be issued:
ERROR: out of memory
DETAIL: Cannot enlarge string buffer containing 1073741822 bytes by 1 more
bytes.
In this case, you can use the binary format: COPY .. TO .. WITH BINARY;
The second problem
When processing strings, memory is allocated dynamically, increasing by the size of the field, and

when unloading a string, an error may occur:
ERROR: out of memory
DETAIL: Cannot enlarge string buffer containing 536870913 bytes by 536870912
more bytes.
When unloading any type of data, including from lob, the row size cannot exceed 1GB. Such fields will

have to be unloaded in parts: by columns; filtering rows and unloading problematic rows separately by
fields.
utility parameter -B or --no-large-objects allows you not to dump lob. For working with lob, there

are functions lo_import() and lo_export() .
Comment
When working with large strings, server processes may try to allocate memory greater than 1 GB. For

example, the current size of the string buffer is 999 MB, an attempt is made to increase it for
processing another 1 GB field, a request is sent to the operating system to allocate another 1 GB. If
there is no physical memory for this 1 GB, then this server process (or any process) receives signal 9
(SIGKILL) from oom-kill . If there is enough physical memory, then the server process returns
"ERROR: out of memory" to the client and continues working.

336Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The text and bytea data types can store data up to 1GB in
size.

• Strings larger than 1GB may require special handling
• Fields may increase in size when uploaded in text form

Large size lines

Parameter enable_large_allocations

Tantor Postgres DBMS parameter that increases the size of StringBuffer in the local memory of
instance processes from 1 gigabyte to 2 gigabytes . The size of one table row when executing SQL
commands must fit in StringBuffer. If it does not fit, then any client with which the server process works
will receive an error, including the pg_dump and pg_dumpall utilities . The size of a table row
field of all types cannot exceed 1 GB, but there may be several columns in the table and the row size
may exceed both a gigabyte and several gigabytes.
pg_dump utility may refuse to dump such rows because it does not use the WITH BINARY option of
the COPY command . For text fields, a non-printable character occupying one byte will be replaced by
a sequence of printable characters occupying two bytes (for example, \n), and the text field may
increase in size up to twice.
postgres=# select * from pg_settings where name like '%large%'\gx
name | enable_large_allocations
setting | off
category | Resource Usage/Memory
short_desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser
vartype | bool
boot_val | off
and for command line utilities:
postgres@tantor:~$ pg_dump --help | grep alloc
--enable-large-allocations enable memory allocations with size up to 2Gb

The parameter can be set at the session level. The StringBuffer is allocated dynamically during the
processing of each line, not when the server process starts. If there are no such lines, the parameter
does not affect the operation of the server process.
This problem occurs with the row of the config table of the 1C:ERP applications, Integrated

Automation, Manufacturing Enterprise Management. Example:
pg_dump: error: Dumping the contents of table "config" failed: PQgetResult() failed.
Error message from server: ERROR: invalid memory alloc request size 1462250959
The command was: COPY public.config
(filename, creation, modified, attributes, datasize, binarydata) TO stdout;

337Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres DBMS parameter that increases the StringBuffer size
from 1 gigabyte to 2 gigabytes

• can be set at session level and by pg_dump, pg_dumpall utilities

• the problem occurs with the row of the config table of the 1C:ERP
applications, Integrated automation, Manufacturing enterprise
management

enable_large_allocations parameter

postgres=# select * from pg_settings where name like '%large%'\gx
name | enable_large_allocations
setting | off
category | Resource Usage/Memory
short_desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser
vartype | bool
boot_val | off

postgres@tantor:~$ pg_dump --help | grep alloc
--enable-large-allocations enable memory allocations with size up to 2Gb

Demonstration

Handling Large Strings

338Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Handling Large Strings

Demonstration

339Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Physical replication

8a

Physical replication

So far we have considered working with a single cluster, served by a single instance on a single host.
A single host can fail, as can the data center in which the host is located. For High Availability (HA) of
database content, you need to use at least one more host with its own file storage system and make
sure that if the first host fails, the second host has the same data as the first and can serve client
applications.
In this chapter we will look at the simplest and most common solution for ensuring high availability -

replication of changes (log records) in data at the physical level (data file pages) - "physical
replication".
Usage model: There is a cluster with which client applications work. It is called the primary or master

cluster. There is only one primary cluster in a configuration using physical replication. A physical
backup copy of the files of this cluster is made on a standby host. This copy is called a standby cluster
or physical replica or simply "replica". The transfer of log data to the standby cluster host is configured.
An instance is launched on the standby host. The instance accepts and applies changes to the files of
the standby cluster. There may be several such standby clusters, they can be located on different
hosts.
The standby cluster is usually opened in read mode (hot standby) and can service requests. At the

same time, the standby cluster continues to apply changes to its files and they become visible to
sessions connected to the instance servicing the standby cluster. Long, analytical requests that usually
generate reports can be transferred to the standby cluster.
https://docs.tantorlabs.ru/tdb/en/17_5/se/high-availability.html

340Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• One main (primary, master) database cluster - allows
changes to be made to data

• One or more standby clusters
• Standby clusters (physical replicas or simply replicas)

receive log data and apply it to their files
• Replicas can serve read requests - hot standby mode
• Replicas are a physical backup of the primary cluster that is

updated

Physical replication

Master and replica

The master and replicas must use the same PostgreSQL master version. The entire cluster is
replicated, including all databases. It is not possible to exclude some objects from replication.
Tablespace directories may differ, since the tablespace directory is only pointed to by a symbolic link in
the PGDATA/pg_tblspc directory .
Replicas cannot be modified, so they cannot create their own log records. The replica log files contain

the master's log records.
Replicas can forward redo logs from the master via the replication protocol to other clients, such as

other replicas. This is called cascading replication. Replicas that receive redo logs from a non-master
cannot commit transactions in synchronous mode and cannot be specified in the
synchronous_standby_names parameter.

341Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Master and replica

MASTER R/W REPLICA R/O

waltzer

start up

PGDATA PGDATA

WAL WAL

LSN LSN LSN

walreceiver

• The master and replicas must use the same major version of
PostgreSQL

• the cluster is replicated as a whole
• tablespace directories may differ

Replicas and archive of the magazine

You can transfer log records to replicas using all available methods. For example, a replica can take
log files from an arbitrary directory, such as the directory where the pg_receivewal utility or any
other utility (for example, specified in the archive_command parameter) places the received files. B
igger capabilities are provided by receiving log records via the replication protocol using a replication
slot, just like the pg_receivewal utility . Only instead of pg_receivewal , a background process
of the replica instance called walreceiver is used .
A replica can be configured to use either a replication slot or log files (the restore_command
parameter on the replica). If the replica is unable to retrieve a log record via the replication protocol
for any reason, it will execute the command specified in restore_command and if the command is
successful, it will attempt to read the log file. In doing so, the replica will attempt to restore the
connection via the replication protocol and will do so if it can retrieve log records via the replication
protocol.

342Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Replicas and archive of the magazine

• Typically, streaming replication is used using a replication
slot: the walreceiver process connects to the walsender
process

• A log archive can be used, filled by the command in the
archive_command parameter or by the pg_receivewal utility
(with a replication slot)

• the replica can use both the replication slot and if it cannot
get the log file through it, then the directory with the log
archive, if it exists

Setting up the wizard

The main cluster (master) is most likely already in use and successfully serving client applications. You
can create and configure a replica without downtime for servicing clients by the master. The replica is
connected via the replication protocol, you need to configure the authentication parameters for the role
under which the replica will be connected. You may need to change the values of the cluster
configuration parameters that do not change without restarting the instance. Parameters:
wal_level (default replica) Must be replica or logical . Changing the value requires an

instance restart
max_walsenders (default 10) One replica uses one connection to walsender, but can reconnect in

case of network failure, and the previous connection can exist up to walsender_timeout .
pg_basebackup can use two connections. Changing the value requires re-reading the configuration
parameters.
max_replication_slots (default 10) Must be at least the number of existing slots, otherwise the

instance will not start. Each replica (regardless of cascading), pg_receivewal, pg_basebackup can use
one slot. Changing the value requires restarting the instance.
max_slot_wal_keep_size (default -1, unlimited) The maximum size of log files that can remain in

the pg_wal directory after a checkpoint for replication slots. If a replica uses a replication slot and does
not connect to the master, the log files are kept by the master for that slot. If no limit is set, the log files
will fill the entire file system and the instance will crash. To prevent this, set a limit. However, the replica
will have to get the log files from somewhere else or the replica will have to be deleted. If the replica is
no longer needed, remember to delete its slot. Changing the value requires rereading the configuration.
walsender_timeout (default 60 seconds) Specifies the time period after which inactive connections

via the replication protocol are terminated. Changing the value requires re-reading the configuration.
synchronous_standby_names and synchronous_commit Configured after replicas are created to

ensure protection against transaction loss if the master is lost. Can be changed without restarting the
instance.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-replication.html

343Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Configure the ability to connect replicas using the replication
protocol

• Check the values of the configuration parameters:
› wal_level default replica
› max_walsenders default 10
› max_replication_slots default 10
› max_slot_wal_keep_size default -1 no limit, should set limit

Setting up the wizard

Creating a replica

After the master is configured, you can start creating a replica. The replica can run on the same node as the
master, but this does not protect against host loss, so it is used for training and testing purposes. In production
use, the replica should run on a host different from the master. To simplify the setup, it is worth using the same
PGDATA and tablespace directories as on the master, but this is not necessary.

When creating a replica using the pg_basebackup utility , it is convenient to:
1) use the -C (--create-slot) and -S (--slot=name) parameters to create a permanent replication

slot. This slot will be used to pass logs to the pg_basebackup utility, and after its completion, the slot will not be
deleted, it will hold the log files so that the master does not delete them before the replica is connected

2) use the -R (--write-recovery-conf) parameter . The following configuration parameters will be written
to the postgresql.auto.conf file of the replica:
a) primary_conninfo - the address to which pg_basebackup connected to the master. The parameter specifies
the address and network connection parameters with which the walreceiver process of the replica instance will
connect to the master instance. walreceiver connects to walsender on the master instance
b) primary_slot_name - the name of the replication slot that the pg_basebackup utility used and which holds
log files until the walreceiver of the replica connects to the master. The parameter has no effect if the cluster is
not a replica or primary_conninfo is not specified
standby.signal file is created in PGDATA , the presence of which tells the startup process not to complete

recovery, but to be in the continuous recovery mode, the cluster is not opened for writing. If the recovery.signal
file is present, standby.signal is in effect.

3) After creating the replica, set the value of the cluster_name configuration parameter on it .
Changing the value requires restarting the replica instance. The parameter sets the default value for the
application_name option of the primary_conninfo parameter . application_name sets the name of
the replica, which can be used on the master in the synchronous_standby_names parameter . Also, the
value of cluster_name will be output in the name of the instance's server processes, which is
convenient for monitoring. If the cluster_name value is not set or is empty, then the walreceiver value is used
for application_name .

4) Check and, if necessary, change the values in the parameter files postgresql.conf, pg_hba.conf.
These files are copied from the master and may not be suitable for the replica host. For example, the replica host
may have less physical memory, which will not be able to accommodate shared_buffers . If the replica is on
the same host as the master, then the port parameter must be changed .

5) Configure the service to automatically start the replica instance and start the replica instance

344Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• creating a backup copy using the pg_basebackup utility
• The -R parameter sets the configuration parameters for the

replica
• The --create-slot (-C) and --slot=name (-S) options create

a slot to hold WAL logs until the replica instance is started.
• set cluster_name configuration parameter
• check the values of the configuration parameters to ensure

they match the capabilities of the replica host
• Configure the service to automatically start the replica

instance and start the replica instance

Creating a replica

Replication slots

There is no reason not to use replication slots. The slot is used by both the pg_receivewal
utility and the replica. There are three types of slots: physical, temporary physical, logical. Logical is
used for logical replication of changes in the tables of two primary clusters. Temporary slots are used in
the process of creating an autonomous backup, usually intended for creating a clone or restoring to the
end of the backup. Physical replication slots are used to transfer (broadcast) log records to replica
clusters.
It is convenient to create a physical replication slot when creating a backup, which will be a backup

cluster. This will allow you to start a replica instance "seamlessly" (without losing log files in the time
interval between the end of the backup and the launch of the replica instance). When a replica instance
is launched, the walreceiver process is launched , which receives log records and saves them
in the PGDATA/pg_wal of the replica. The startup process is also launched, which
rolls the contents of the PGDATA/pg_wal directory and periodically (the
wal_retrieve_retry_interval parameter) checks whether anything new has appeared there.
Functions for working with physical slots:
pg_create_physical_replication_slot('name', false, false) - the slot must be given a

name. The second parameter is important, by default it is false - the LSN is reserved when the
streaming replication client first connects. If true, the LSN for this replication slot must be reserved
immediately. The third parameter by default is false - the slot is physical permanent, if true then it is
temporary.
pg_drop_replication_slot('name') - drops a slot of any type
pg_copy_physical_replication_slot('name', 'name_to_create', false) - creates a slot

and initializes it with the LSN of an existing slot. Used if the same backup is used when creating two
replicas.
The list of replication slots can be viewed in the pg_replication_slots view.

345Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• are used by replicas
• list of slots in pg_replication_slots view
• Create function
pg_create_physical_replication_slot('name')

• Drop a slot of any type
pg_drop_replication_slot('name')

• Create a copy of a slot
pg_copy_physical_replication_slot('name',
'name_to_create')

Replication slots

Configuration parameters on replicas

Some configuration parameters configure the operation of the replica. During the operation of the master-replica
configuration, one of the replicas can become the master, and the former master can become the replica. This is
called changing the roles of database clusters in physical replication. The following parameters can be set in
advance on the master, and when creating replicas, these parameters will be used on the replicas:
walreceiver_status_interval defaults to 10 seconds. Feedback will be sent no more often than once per

this interval. The event horizon of databases on the master will be moved no more often than this interval.
wal_retrieve_retry_interval defaults to 5 seconds. Time a replica waits for log data to arrive from any

source (streaming replication, local pg_wal log archive) before retrying the retrieve (walreceiver sends a
walsender request and waits for a response, startup executes restore_command, startup reads PGDATA/pg_wal)
recovery_min_apply_delay defaults to zero. Will be discussed later.
hot_standby is on by default. Determines whether it will be possible to connect to the instance and execute

queries (hot standby) or not (warm standby). The parameter plays a role only in replica or recovery mode. The
value affects the behavior of the instance during replica recovery and maintenance. For example, if
hot_standby=off , then the value of another parameter recovery_target_action=pause acts as shutdown,
and if hot_standby=on , then as promote. The parameter changes only when the instance is restarted. If
hot_standby=on , then the following parameters are in effect:
hot_standby_feedback ("feedback") - off by default. Sets whether the walsender of the replica (in the
hot_standby=on mode, since there are no queries on the replica when off) will inform the walsender
from which it receives logs about the queries it is currently executing. With cascade replication, data from all
replicas (in the cascade) is transmitted to the master. The master holds the "database event horizon" for the
longest query (or transaction in the REPEATABLE READ mode) among all replicas on which feedback is enabled.
This leads to the fact that obsolete row versions are not removed not only by (auto)vacuum, but also by fast
cleanup (HOT cleanup) , but thanks to this, queries on the replica do not receive the " snapshot too old " error
and have the opportunity to finalize and issue all the data.
walreceiver_timeout defaults to 60 seconds. A replica's walreceiver can detect that walsender has

not responded and reconnect.
max_standby_streaming_delay and max_standby_archive_delay are 30 seconds by default. The

maximum allowed delay time for WAL application.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-replication.html#RUNTIME-CONFIG-REPLICATION-

STANDBY

346Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• on the master they do not play a role, but can be pre-
installed

• many do not change without restarting the replica instance
• by default:
• replica is servicing requests (hot_standby= on)
• feedback is disabled (hot_standby_feedback= off)
• the replica applies log records without delay (
recovery_min_apply_delay=0)

Configuration parameters on replicas

Hot replica

A physical replica is serviced by its own instance. A replica can be used to service commands that do
not change data - queries. When migrating the reading logic, it is worth considering that the relevance
of the data returned by the replica cannot be guaranteed. If the synchronous_commit
configuration parameter on the master is set to remote_apply , then the replica can return
data to its sessions (this behavior cannot be guaranteed) earlier than to the master. That is, if there are
two sessions from a client to the master and the replica, in these sessions a SELECT command is
issued simultaneously to rows that have just been changed by a transaction in a parallel session of
the master, the session with the replica can return the data changed by this transaction, and the master
session will not return it. It is impossible to guarantee the synchronicity of the return of the same data. It
is not worth migrating the entire reading load to the replica. A part of the application logic that builds
reports and executes analytical queries can be transferred to the replica. These are queries whose
execution time significantly exceeds the replication lag (the delay in transferring and rolling back log
records) and it does not play a role in the application logic.
By default, the hot_standby=on configuration parameter and the physical replica operates in

hot standby mode - it can service commands that do not change data. For example, the SELECT,
WITH, COPY TO selection commands , as well as the BEGIN TRANSACTION, COMMIT, ROLLBACK
commands - these commands are needed to be able to execute queries at a single point in time, which
is implemented by opening a transaction on the replica in REPEATABLE READ mode. The
SERIALIZABLE level is not supported and does not differ for reading from REPEATABLE READ :
ERROR: cannot use serializable mode in a hot standby
HINT: You can use REPEATABLE READ instead. The results of the
COMMIT and ROLLBACK commands will not differ, they are used only to close a transaction that did not
change anything. Using temporary tables is impossible.
One of the useful features of the replica is that backup utilities can create backup copies by

connecting to the replica, thereby removing the load from the master by transferring the backup to the
replica.
https://docs.tantorlabs.ru/tdb/en/17_5/se/hot-standby.html

347Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• enabled by default (parameter hot_standby=on)
• the replica accepts connections and executes queries
• pg_basebackup utility can perform backup of replica instead

of master (backup offloading)
• temporary tables on replica cannot be used, pg_variables

extension can be used

Hot replica

Feedback to the master

By default, hot_standby_feedback=off and the master does not take into account that SELECT
commands are executed on replicas . This means that DROP commands can be executed on
the master , passed to replicas, applied by the startup process, and the SELECT that accessed the
object will not find it and return an error. And after DROP DATABASE on the master and executing this
command on the replica, the sessions on the replica with this database will be interrupted. Commands
for changing objects are rarely executed on the master, and there is no point in refining queries if they
decided to delete an object. Vacuuming (including automatic) on the master, which cleans out old
versions of rows, has a practical effect on queries on the replica. Old versions of rows are formed after
their deletion or update, but not after inserts. A query on a replica can be interrupted even if vacuuming
was not performed on the table, but due to a HOT (Heap-Only tuples) update.
If you want queries on replicas to be executed without errors, you can:
1)max_standby_streaming_delay and max_standby_archive_delay parameters to the duration
of the longest query. If the query exceeds this time, it will fail with an error, not always, but only if there
is a conflict. The delay in applying conflicting log records can increase the lag of the replica from the
master ("lag") up to the values of these parameters. All sessions on the replica will issue data with a
delay. Also, if you want to make the replica a master, there may be a delay in applying log records to
eliminate the lag.
2)enable feedback. This will affect the master - it will not be able to clean up old row versions, since
queries on replicas will hold the event horizon of the master's databases. Horizon retention affects
vacuuming and HOT cleanup.

348Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• feedback is disabled by default hot_standby_feedback=
off

• feedback keeps the entire master's cleanup horizon to the
duration of the longest query on the replica or transaction
bases (REPEATABLE READ transaction level)

• Parameters can be used instead of feedback
› max_standby_streaming_delay and
› max_standby_archive_delay

Feedback to the master

Horizon Monitoring

Checking whether the database horizon is shifted is important to assess whether autovacuum can
effectively clean up old row versions, and HOT can perform in-page cleanup, and to assess the impact
of enabling feedback.
The number of queries cancelled in the replica databases since the statistics were reset can be viewed

in the pg_stat_database_conflicts view on the replica.
Monitoring queries and transactions on cluster databases:
select age(backend_xmin), extract(epoch from (clock_timestamp()-xact_start))
secs, pid, datname database, state from pg_stat_activity where backend_xmin IS
NOT NULL OR backend_xid IS NOT NULL order by greatest(age(backend_xmin),
age(backend_xid)) desc;

age | secs | pid | database | state
--------+-------------+--------+----------+---------------------
175455 | 1425.651346 | 255554 | postgres | idle in transaction

1 | 0.001878 | 255547 | postgres | active
1 | 0.001213 | 255626 | postgres | active

pg_replication_slots view contains the state of all replication slots. The xmin column contains
the ID of the oldest transaction for which the horizon should be held. Example query:
select max(age(xmin)) from pg_replication_slots;
pg_stat_replication view on the master contains one row for each walsender . The
backend_xmin column contains the oldest transaction ID ("xmin") of the replica if feedback is
enabled (hot_standby_feedback=on).
https://docs.tantorlabs.ru/tdb/en/17_5/se/monitoring-stats.html

349Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Estimation of the current database horizon:
› backend_xmin from pg_stat_activity
› Duration of the longest running query or transaction:

max(now()-xact_start) from pg_stat_activity
› xmin column of the pg_replication_slots view when using

replication slots
› Column backend_xmin of view pg_stat_replication on

master - what walsender got from feedback

Horizon Monitoring

select age(backend_xmin), extract(epoch from (clock_timestamp()-xact_start)) secs, pid, datname database,
state from pg_stat_activity where backend_xmin IS NOT NULL OR backend_xid IS NOT NULL order by
greatest(age(backend_xmin), age(backend_xid)) desc;
age | secs | pid | database | state

--------+-------------+--------+----------+---------------------
175455 | 1425.651346 | 255554 | postgres | idle in transaction

1 | 0.001878 | 255547 | postgres | active
1 | 0.001213 | 255626 | postgres | active

Horizon Monitoring

It is necessary to monitor the database horizon in order to find the reasons why it is held or not shifted
for a long time.
The horizon of the cluster databases in the number of transaction numbers separated from the current

one:
select datname, greatest(max(age(backend_xmin)), max(age(backend_xid))) from
pg_stat_activity where backend_xmin is not null or backend_xid is not null group
by datname order by datname;
The duration of the longest query or transaction that holds the horizon:
select datname, extract(epoch from max(clock_timestamp()-xact_start)) from
pg_stat_activity where backend_xmin is not null or backend_xid is not null group
by datname order by datname;
Horizon hold (held on all bases) by physical replication slots if feedback is enabled (
hot_standby_feedback=on):
select max(age(xmin)) from pg_replication_slots;
select backend_xmin, application_name from pg_stat_replication order by
age(backend_xmin) desc;
In the replicas themselves, you can search for processes executing commands that maintain the

horizon in the same way as on the master - by querying pg_stat_activity :
select age(backend_xmin), extract(epoch from (clock_timestamp()-xact_start))
secs, pid, datname database, state from pg_stat_activity where backend_xmin IS
NOT NULL OR backend_xid IS NOT NULL order by greatest(age(backend_xmin),
age(backend_xid)) desc;

350Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• cluster database horizon in the number of transaction numbers separated from
the current one:

• the duration of the longest query or transaction that holds the horizon:

• horizon hold (held on all bases) by physical replication slots if feedback is
enabled (hot_standby_feedback=on

• in the replicas themselves, you can search for processes executing commands
that maintain the horizon in the same way as on the master - by querying
pg_stat_activity

Horizon Monitoring

select datname, greatest(max(age(backend_xmin)), max(age(backend_xid))) from pg_stat_activity
where backend_xmin is not null or backend_xid is not null group by datname order by datname;

select datname, extract(epoch from max(clock_timestamp()-xact_start)) from pg_stat_activity
where backend_xmin is not null or backend_xid is not null group by datname order by datname;

select max(age(xmin)) from pg_replication_slots;
select backend_xmin, application_name from pg_stat_replication order by age(backend_xmin) desc;

select age(backend_xmin), extract(epoch from (clock_timestamp()-xact_start)) secs, pid, datname database,
state from pg_stat_activity where backend_xmin IS NOT NULL OR backend_xid IS NOT NULL order by
greatest(age(backend_xmin), age(backend_xid)) desc;

Parameters max_slot_wal_keep_size and transaction_timeout

To prevent unlimited space usage, it is worth checking or setting the values of the following
parameters.
max_slot_wal_keep_size defaults to -1 (no limit). The maximum size of log files that can remain in

the pg_wal directory after a checkpoint for replication slots. If a slot is enabled and a client does
not connect, the log files are kept. If no limit is set with this parameter, the log files will fill the entire file
system and the instance will crash . A server process that fails to write data to the log will be terminated:
LOG: server process (PID 6543) was terminated by signal 6: Aborted
The instance will then attempt to restart:
LOG: all server processes terminated; reinitializing
To avoid running out of space, it's worth setting a limit. However, a replica that fails to get the logs and

they are erased will have to get the log files from somewhere else, or the replica will have to be deleted
and recreated.
transaction_timeout is zero by default, timeout is disabled. Allows you to cancel not only an idle

transaction, but also any transaction or single command whose duration exceeds the specified period
of time. The parameter applies to both explicit transactions (started with the BEGIN command) and
implicitly started transactions corresponding to a single statement. The parameter appeared in Tantor
DBMS version 15.4.
Long-running transactions and single statements hold the database horizon. Holding the database

horizon prevents old row versions from being cleaned up and causes object files to bloat.
statement_timeout + idle_session_timeout do not protect against transactions consisting of a

series of short commands with short pauses between them (for example, a long series of fast UPDATEs
in a loop). The old_snapshot_threshold parameter can be used to protect against long
SELECT commands . It should not be set on physical replicas. In version 17,
old_snapshot_threshold was removed and transaction_timeout can be used to replace it.

351Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• max_slot_wal_keep_size default -1 (no limit) maximum
size of log files that can remain in the pg_wal directory after a
checkpoint for replication slots

• transaction_timeout defaults to zero (timeout disabled).
Allows any transaction or single command that exceeds the
specified time period to be rolled back, not just idle ones.
Protects against database horizon holdup and file bloat.

Parameters max_slot_wal_keep_size and
transaction_timeout

Master settings that need to be synchronized

Some parameters require attention. If you change the values of these parameters on the master, then
these values on the replicas must match the values on the master. Since the master-replica roles can
change, it is worth making the values of these parameters the same on all clusters, so as not to monitor
the values after changing roles. If you need to increase the values of these parameters, you must first
increase them on all replicas, and then make changes on the master. If you need to decrease the values
of these parameters, first decrease them on the master, and then change the values on the replicas.
Changes to these parameters are written to WAL. If, while reading received WAL, the startup

replica process detects that the value on the master has become greater than in the configuration of its
instance, then if the replica is open for reading (the hot_standby=on parameter), a warning will be
written to the cluster log and the overlay of log records will be suspended. If the replica does not allow
connections (hot_standby=off), then the replica instance will stop and stop accepting log records,
which can lead to a problem with synchronous replication.
List of parameters:
1) max_connections, max_prepared_transactions, max_locks_per_transaction these

parameters limit the maximum number of object locks
2) max_walsenders
3) max_worker_processes
https://docs.tantorlabs.ru/tdb/en/17_5/se/hot-standby.html

352Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• If you change the values of these parameters on the master, then
on the replicas these values must match the values on the master.

• Changes to these parameters are recorded in the log.
• if the replica detects that the value on the master has become

greater, then the overlay of log records will be suspended or the
replica instance will be stopped

• List of parameters:
• max_connections, max_prepared_transactions,

max_locks_per_transaction limit the maximum number of object-
level locks

• max_walsenders
• max_worker_processes

Master settings that should be synchronized with
replicas

Master-replica role reversal

In physical replication, one of the clusters has the "role" of the master (leading, primary), the others
have the roles of backup servers (replicas, slaves). You can change roles:
1)when the master is operational, such as for a scheduled shutdown of the master instance. This role
change is called a switchover.
2)the master is inoperative. This role reversal is called failover.
Before the procedure, you need to:

1)eliminate or minimize transaction loss. To protect against loss, you can set up synchronous replication
with transaction confirmation by replicas before the failure and switch to the replica that has the highest
accepted and applied LSN. If synchronous replication was not used, then it is worth finding the master
log files. You can determine the log file to which the master instance wrote before corruption by the
master control file using the pg_controldata utility or other methods. This file and others, if they
were not transferred to the replica, can be copied to the PGDATA/pg_wal directory of the replica
and make sure that the log records from it are applied.
With synchronous replication, the setting can be such that transactions are confirmed by one of the
replicas. If the master is corrupted, it may happen that only one replica received the latest log record,
while the others did not. If you make a replica that did not receive the latest log record the master, then
transactions may be lost. You can find out which of the replicas received the last log record to the
master using the functions:
pg_last_wal_receive_lsn() - the last received LSN on the replica
pg_last_wal_replay_lsn() - the log record that was restored last. If pg_is_in_recovery()
returns true, then this is the last applied log record. On the master, the function returns the LSN on
which the master instance was opened after restoration, and if it was correctly closed, then it returns
NULL. The replica with the higher LSN should be designated as the master.
2)There should only be one master at a time. If clients have two masters available and they accept
changes ("split brain") from clients, then it will be difficult to parse transactions. To avoid having two
masters available, you need to stop the master instance before signaling one of the replicas to become
a master.

353Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• scheduled when the master is operational is called
switchover

• If the master is not working, it is called failover
• make sure the master is stopped before signaling one of the

replicas to become the master
• eliminate or minimize transaction loss
• pg_last_wal_replay_lsn() - the log record that was last

restored
• pg_last_wal_receive_lsn() - last received LSN on a replica

Master-replica role reversal

Promoting a replica to master

There are two ways to make a replica a master (promote, advance or raise):
1) execute pg_ctl promote
2) call the pg_promote(boolean, integer) function . The first parameter is whether to wait for

the operation to complete (default is true), the second parameter is the maximum number of seconds to
wait (default is 60). Returns true if the promotion operation was successfully completed.
If you delete the standby.signal file and restart the replica instance, there will be no transition to

the new timeline. In this case, the pg_rewind utility cannot be used in practice and the former master
will have to be recreated. Deleting the standby.signal file can only be considered as a way to
change roles with a correct master stop before promoting the replica.
After the new master appears, you can change the values of the primary_conninfo parameter of

other replicas and the former master. Create replication slots on the new master. Make a replica out of
the former master by creating a standby.signal file. If the former master instance was
stopped correctly and the cluster files are not damaged, then it is enough to
start the cluster instance without forgetting to create the standby.signal file . If
the former master was stopped incorrectly, then you will most likely want to restore it. You can restore
it by recreating the cluster: making a backup using the pg_basebackup utility -R . You can also
use the pg_rewind utility if the new master promotion was performed with a transition to a new
timeline.

354Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pg_ctl promote utility
• call the pg_promote() function
• promotion to master increases the timeline by one
• when switching to a new timeline, a text file
0000000N.history is created in the PGDATA/pg_wal
cluster directory

Promoting a replica to master

Timeline History Files

Each time a new timeline is created, a timeline history file is created that stores tags of which timeline
the new timeline branched off from and when.
A new timeline is created when a replica is promoted to master; when restoring from a backup to a

point in time in the past, which can be specified by one of the parameters: recovery_target,
recovery_target_lsn, recovery_target_name, recovery_target_time,
recovery_target_xid .
History files are needed so that utilities and instance processes can find the name of the log file that

contains the log entry with the desired timeline.
The timeline history file is a small text file in the PGDATA/pg_wal directory named
0000000N.history . You can add comments to the history file about how and why that particular
timeline was created.
When a new file is created, the contents of the previous history file of the timeline on the basis of

which the new timeline was created are saved into it.
Example of the contents of the file 00000003.history
1 116/E30150E8 no recovery target specified
2 116/E30161E8 no recovery target specified
There is no point in deleting these files. Example of errors related to missing files:
pg_basebackup : could not send replication command "TIMELINE_HISTORY" : ERROR: could not
open file "pg_wal/00000002.history": No such file or directory
pg_rewind -D /var/lib/postgresql/tantor-se-17-replica/data1 --source-
server='user=postgres port=5432'
pg_rewind: connected to server
pg_rewind: error: could not open file "/var/lib/postgresql/tantor-se-17-
replica/data1/pg_wal/00000004.history" for reading: No such file or directory

Запуск экземпляра после перехода на новую линию:
pg_ctl start -D /var/lib/postgresql/tantor-se-17-replica/data1
...
LOG: unexpected timeline ID 2 in WAL segment 0000000400000116000000E3, LSN 116/E3016000,
offset 90112
LOG: invalid checkpoint record
PANIC: could not locate a valid checkpoint record
LOG: startup process (PID 7638) was terminated by signal 6: Aborted
https://docs.tantorlabs.ru/tdb/en/17_5/se/continuous-archiving.html#BACKUP-TIMELINES

355Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• They are located in the PGDATA/pg_wal directory.
• They have the name 0000000N.history
• There is no need to delete these files.
• When a replica is promoted to master, a new timeline and a

new timeline history file are created
• used by utilities and processes for backup and recovery

purposes
• are requested and transmitted via the replication protocol

along with log files
• are backed up along with log files

Timeline History Files

pg_rewind utility

pg_rewind utility synchronizes a cluster directory (PGDATA and tablespace directories) with the directory of
another cluster from which the synchronized directory was created.

The presence of timeline branching is essential for the utility to work. The utility searches for the
0000000N.history file (contains the history of timeline creation) of both clusters in order to find the point at
which the timelines of the two clusters diverged. Then it reads the log files in PGDATA/pg_wal starting from the
last checkpoint before the moment when the timeline history diverged and up to the current log file of the cluster
whose directory will be synchronized (the "target" cluster). From the log records it determines all the blocks to
which changes were made. Then it copies these blocks from the other cluster.

Next, the utility copies all files located in PGDATA (and tablespaces), including new data files, log files, pg_xact,
parameter files, arbitrary files. The directories pg_dynshmem, pg_notify, pg_replslot, pg_serial,
pg_snapshots, pg_stat_tmp, pg_subtrans, pgsql_tmp, files backup_label, tablespace_map,
pg_internal.init, postmaster.opts and postmaster.pid are not copied. The utility creates a
backup_label file to switch to rewinding the log from the checkpoint to the point of divergence and sets in
the pg_control file LSN of the beginning of the consistent state. The utility copies all parameter files that are
in PGDATA. If the contents of the parameter files are important, it is worth saving them before running the utility in
order to restore them after its operation.

Typically, the utility is used to bring a former master back into operation after an unplanned role change
(failover). If the former master fails to send at least one log record to the replica that becomes the master, the
former master cannot work as a replica. The pg_rewind utility is used to avoid completely
recreating the former master .

It is essential that a new timeline is created when the replica is promoted. If this does not happen, pg_rewind
will look for the most recent timeline, which may have been created a long time ago and the log files are no longer
there.

If the utility cannot write to any file, it stops working. If the utility does not complete successfully and repeated
attempts to start it do not result in a correct completion, the directory of the synchronized cluster cannot be used.

Using the -R --source-server='address' parameters simplifies configuration: a standby.signal file
is created and the primary_conninfo parameter with connection parameters is added to the end of
postgresql.auto.conf .

https://docs.tantorlabs.ru/tdb/en/17_5/se/app-pgrewind.html

356Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• synchronizes the PGDATA directory and tablespaces with
the source cluster, including replacing parameter files

• used to bring a former master back into work after an
unplanned role change

• the role change must be accomplished with the transition to a
new timeline

• requires full_page_writes , checksum calculation (or
wal_log_hints) to be enabled

• creates a backup_label file that specifies parameters for
restoring consistency

pg_rewind utility

Replica instance processes

The following processes are present on the replica instance:
1) postgres - main process. listens on sockets, starts processes
2) checkpointer . Checkpoints are initiated only on the master. On the replica, a "restart point" is

performed when a checkpoint log entry is received. If a failure occurs during recovery, the replica
can continue from the last restart point.

3) background writer writes dirty pages from the buffer cache to disk
4) startup - rolls up journal entries
5) walreceiver , which receives log data from the master's walsender process
6) There may be extension processes, such as stats collector , as well as server processes that service

sessions created with the replica.
Promoting a replica to master occurs quickly, since shared memory is allocated and some processes

are running.

357Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• postgres main process, starts other processes, accepts
connections

• checkpointer performs restart points
• background writer writes dirty pages to disk
• startup rolls log records from files to PGDATA/pg_wal
• walreceiver receives a stream of log records and writes them

to files in PGDATA/pg_wal

Replica instance processes

Delayed replication

By default, a replica applies received log records immediately and at maximum speed. The
recovery_min_apply_delay parameter sets the minimum delay that replica sessions should see data. The
parameter is set on the replica and affects only it, not other replicas. The delay is calculated as the difference
between the timestamp written to the log record on the master and the current time on the replica. If the time on
the master and replica hosts is not synchronized and differs, the delay is not calculated accurately - taking this
difference into account.

If the replica has just been created (using the pg_basebackup utility) and the replica files are not yet
consistent, the log records for reconciling the files are applied immediately. The delay begins when the replica is
synchronized and does not occur further, since the replica files remain synchronized.

when log records are received by a replica (the walreceiver process). The log files will be stored in
PGDATA/pg_wal on the replica until they are applied by the startup process . The longer the delay, the larger
the volume of WAL files that must be accumulated and the more disk space is required for the PGDATA/pg_wal
directory on the replica.

It is important to remember that when using feedback (the hot_standby_feedback parameter), the master
will not be able to clean up old row versions for at least the set delay (plus the duration of queries on the replica).
You should use feedback with caution when using delay.

Also, if synchronous_commit=remote_apply on the master and the replica is the only one in the configuration
or should be used to commit transactions, then all transactions will hang for the time of the set delay.

The delay is applied to log records containing COMMIT , other log records are rolled forward without delay if
possible. However, log records cannot be rolled forward in any order due to dependencies between transactions.
Therefore, you should not assume that by removing the delay, the replica will quickly roll forward log records.

Delayed replication is controlled by functions. For example, pg_wal_replay_pause() allows you to pause
recovery. It is used if unwanted changes have occurred on the master and you need to decide what to do -
unload data from the replica or roll up log records to the desired moment to make the replica the master.

358Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• You can set a delay for a replica in applying log records
• by default there is no delay
• recovery_min_apply_delay parameter
• the parameter is set at the cluster level, when

changing it is enough to reread the parameter files

Delayed replication

Recovering damaged data blocks from a replica

Tantor Postgres has a page_repair extension .
postgres=# select * from pg_available_extensions where name like '%repair%';

name | default_ver| installed_ver| comment
-------------+------------+--------------+--------------------------
page_repair | 1.0 | | Individual page reparing
postgres=# load 'page_repair';
When a damaged data page appears on the master, it is possible to take the page image from the

replica if it is not damaged on this replica. An extension must be installed in the master database.
Example command:
CREATE EXTENSION page_repair;
The extension contains two functions:
1) pg_repair_page(table regclass, block_number bigint, connstr text) Function

parameters: table table name, block_number damaged block number
connstr - connection string to the backup server. An example of a connection string can be taken

from the primary_conninfo configuration parameter on any of the replicas. On the master, this
parameter can be set in advance in case of a role change.
2) pg_repair_page(table regclass, block_number bigint, connstr text, fork text)
fork - the name of the fork in which the block needs to be restored: 'main', 'fsm', 'vm' .
pg_repair_page function requests an exclusive ACCESS EXCLUSIVE lock on the object in which

the block will be restored and waits until the replica overwrites the master's log records, eliminating the
lag from the master. If you plan to restore several pages, you can obtain the lock in advance with the
LOCK TABLE command .
https://docs.tantorlabs.ru/tdb/en/17_5/ be /page_repair.html

359Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The page_repair extension contains the pg_repair_page
function for restoring damaged blocks.

• one block is restored per procedure call
• you can restore blocks of layers main, vm, fsm
• During the recovery process, an exclusive lock is set on the

relation
• the block is requested from the replica via the connection
• connection parameters are passed to the function

Recovering damaged data blocks from a replica

Demonstration

Creating a replica and running its instance

360Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Creating a replica and running its instance

Demonstration

Practice

Creating a replica
Replication slots
Changing the cluster name
Creating a second replica
Choosing a replica for the role of the master
Preparing to switch to replica
Switch to replica
Enabling feedback
pg_rewind utility

361Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Creating a replica
2. Replication slots
3. Changing the cluster name
4. Creating a second replica
5. Choosing a replica for the role of the master
6. Preparing to switch to replica
7. Switch to replica
8. Enabling feedback
9. pg_rewind utility

Practice

Practice

Using the pg_dump utility
Custom format and pg_restore utility
Directory format
Compression and backup speed
COPY command

362Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Using the pg_dump utility
2. Custom format and pg_restore utility
3. Directory format
4. Compression and backup speed
5. COPY command

Practice

363Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Logical replication

8b

Logical replication

Replication involves capturing, transferring, and applying changes to table rows. With physical
replication, changes are tracked and applied at the physical level - the file and page level. With logical
replication, changes are tracked at the level of tables and their rows, i.e. logical objects. In logical
replication, changes are applied by SQL commands, for rows - row by row.
When you set up logical replication, you define sets of "source" tables whose changes you want to

replicate. These sets of tables are included in a "publication" database object. You can add or remove
tables from a "publication" without recreating it. A publication is a local database object and can only
include tables that are in its database.
What is captured is not the SQL commands that made the changes, but their consequences: for each

row affected by the command, the row identifier, the type of action with the row (delete, insert, change)
and the values of the fields affected by the command in this row are captured. This logic is called "row-
based replication". There are "statement-based replication" architectures, but this type of replication is
not used for commands that process table rows, as it has side effects.
Logical and physical replication can run simultaneously.
Logical replication uses a "publish" (source) and "subscribe" (target) architecture. When replication is

set up, objects of the same name are created in the databases.
Logical replication is evolving and new possibilities are emerging.
New features in version 15:
https://docs.tantorlabs.ru/tdb/ru/15_12/se/release-15.html
New features in version 16:
https://docs.tantorlabs.ru/tdb/ru/16_8/se/release-16.html
New features in version 17:
https://docs.tantorlabs.ru/tdb/en/17_5/se/release-17.html

364Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• supports replication of changes in rows of regular and
partitioned tables

• Logical and physical replication can operate simultaneously.
• Two types of objects are created: publications and

subscriptions
• The publication includes a set of tables from one database.
• The set of tables can be changed without stopping

replication
• Changes are replicated, not commands.
• The same table can be a source and a receiver of changes

Logical replication

Using Logical Replication

Examples of use other than those listed on the slide:
- propagation of changes in tables used by the application as reference data storage from the central
database to regional ones.
- event actions table - triggers to insert rows on the subscriber side when a row is inserted into a table
in the publication table.
- a table into which rows with the current time (timestamp) are inserted at a certain frequency and
based on the publication database to track the lag and the status of the application on the subscriber
side (heartbeat table).
- replication between different major versions, builds, forks of PostgreSQL for the purpose of migration
to them
- distributing data to client applications that should not have access to the main database
https://docs.tantorlabs.ru/tdb/en/17_5/se/logical-replication.html

365Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Using Logical Replication

Used for:
• transferring data to archival or analytical databases
• data consolidation: transferring data from regional databases

to the central one
• organizing a backup database in case of loss of the main one
• reducing the load on the database by transferring some of

the requests to backup databases

Physical and logical replication

Advantages of logical replication over physical replication:
1)you can replicate sets of tables, not the entire cluster
2)insensitivity to major versions, platforms, builds of PostgreSQL software physical damage does not
apply
3)no extra traffic: log records are transmitted not for the entire cluster, but for the tables included in the
publication
4)the structure of subscriber tables may differ from the structure of publication tables
5)flexibility: one table can be included in several different publications and subscriptions
6)there is bidirectional replication
Disadvantages compared to physical:

1)Only the results of executing the INSERT, UPDATE, DELETE, TRUNCATE commands on specific
tables are replicated. Replication of other types of objects (external tables, views, etc.) is not
supported. If the table on which the TRUNCATE command is executed is linked by a foreign key to
tables not included in the subscription, the command will return an error on the Subscriber and
replication will be suspended. Support for replication of the state of sequences is planned to be
implemented in version 17. The absence of "support" means that the current value of the sequence on
the Subscriber (if it exists) does not change. Data in auto-incremental columns (serial, bigserial) and
generated columns (GENERATED .. AS IDENTITY) are replicated by values.
2)"conflicts" may occur, which will result in changes to subscription tables being suspended
3)requires setting the wal_level parameter to replica at the level of the entire cluster where the
publication resides. This results in a significant increase in the volume of redo log data, especially if
many tables have the REPLICA IDENTITY FULL property and rows are frequently deleted or
changed in such tables.
4)lo replication is not supported . There is no way around this limitation except by storing data in
regular tables, such as columns with the bytea data type .
https://docs.tantorlabs.ru/tdb/en/17_5/se/logical-replication-restrictions.html

366Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Logical replication capabilities:
• you can replicate sets of tables, not the entire cluster
• insensitivity to major versions, platforms, builds
• log records are transferred not for the entire cluster, but only

for replicated tables
• there is bidirectional replication
• log data can be transferred from a physical replica

Physical and logical replication

Identifying Strings

Logical replication replicates not the text of SQL commands executed on tables included in the
publication, but changes in table rows. For INSERT, identification is not required and REPLICA
IDENTITY can have any value. For UPDATE and DELETE (and MERGE if at least one row is changed or
deleted), it is necessary to identify the rows to which changes will be made. For identification, it is
necessary to capture and transfer the values in the columns even if these columns were not mentioned
in the command on the source. Sometimes this is called capturing field values before the change
(before image). However, before image is a broader concept - they can be used for conflict resolution
procedures and for this purpose, before image could include not only the columns identifying the row,
but any others. In the current version, there is no automatic conflict resolution functionality and before
images are used to identify the row.
To replicate UPDATE and DELETE s , which are replicated row by row, the publication tables must be

configured with a "replication identifier" to identify the rows to modify or delete on the Subscriber side.
The simplest way to identify rows in tables is to use primary key values and this is the default value.
Instead of a primary key (including a composite key), you can assign any of the unique indexes on the

table as a replication identifier. A primary key differs from a unique key in that the primary key has a
NOT NULL constraint on all columns of the key . When using unique indexes, you must add
this constraint to the columns that are used in this constraint. It makes sense to use unique indexes only
if the table does not have a primary key.
Without primary keys and unique indexes, you can replicate UPDATE and DELETE , but you must

specify a replication ID for all columns of the table. If you add a table to a publication that replicates
UPDATE and DELETE operations without specifying REPLICA IDENTITY , UPDATE and DELETE
transactions on the source (not on the subscribers) will fail.

367Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• for replication of only row insertions (INSERT) and
TRUNCATE, row identifiers are not needed

• to update and delete rows in the table there must be:
• primary key
• or a unique index and NOT NULL integrity constraints on

each of the unique index columns
• or use all columns to identify a row

Identifying Strings

Methods of string identification

INSERT commands will be able to execute without errors, they do not need an identifier and can be
any. One of the possible values is REPLICA IDENTITY NOTHING . The documentation describes it as
"Records no information about the old row", that is, in terms of "before image", and means that the
values of columns other than those specified in the command are not captured, but the UPDATE and
DELETE commands are blocked on the source. An example of an error on the source:
ALTER TABLE t REPLICA IDENTITY NOTHING;
UPDATE t SET t='b' WHERE id=2;
ERROR: cannot update table "t" because it does not have a replica identity and
publishes updates
HINT: To enable updating the table, set REPLICA IDENTITY using ALTER TABLE
NOTHING value is the default for system catalog tables (those in the pg_catalog schema).
There is no need to set NOTHING for regular tables, it does not provide any advantages, including for

initial synchronization, since there is no need to identify rows during synchronization and inserts.
There are no requirements for indexes on subscription tables; indexes are created there to increase

performance.
List of tables in the database that cannot replicate UPDATE and DELETE until a primary key is created

or an identity method is specified:
SELECT relnamespace::regnamespace||'.'||relname "table"
FROM pg_class
WHERE relreplident IN ('d','n') -- d primary key, n none
AND relkind IN ('r','p') -- r is a table , p is partitioned
AND oid NOT IN (SELECT indrelid FROM pg_index WHERE indisprimary)
AND relnamespace <> 'pg_catalog'::regnamespace
AND relnamespace <> 'information_schema'::regnamespace
ORDER BY 1;

368Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• If the table does not have a primary key, you must set the
row identification method with the
ALTER TABLE command name REPLICA IDENTITY
› DEFAULT; use primary key
› USING INDEX name; unique, non-partial, non-deferred index,

set NOT NULL on all indexed columns
› FULL; pass values of all columns
› NOTHING; set for system catalog tables, meaningless for user

tables

Methods of string identification

Steps to create logical replication

To set up logical replication you need to:
1)check that the parameter wal_level=logical on the master and the source cluster
2)select tables to be included in the publication. Tables must have a primary key. If there is no primary
key, it is advisable to check for the presence of a unique, non-partial, non-deferred index and the
presence of the NOT NULL integrity constraint for the columns of this index and issue the
ALTER TABLE name REPLICA IDENTITY USING INDEX index_name command; If these conditions
are not met, you can issue the ALTER TABLE name REPLICA IDENTITY FULL command ; but in
this case, when changing or deleting rows, old values of all table fields will be written to the log , and
the size of the rows may be large.
3)Create tables on a database in this or another cluster that will accept changes. The table creation
script can be obtained using the pg_dump utility with the --schema-only parameter . Logical
replication functionality does not have the ability to copy table definitions.
DDL commands are not replicated, and the definitions and set of tables are not synchronized. The initial
set of tables in a publication can be copied using the pg_dump utility with the --schema-only
parameter . Subsequent changes to the set of tables and their definitions will need to be
synchronized manually. Schemas and tables do not have to be absolutely identical in the publication
and subscriber databases. If the table definitions in the publication database do not change, logical
replication works reliably. If a table definition changes in the publishing database, and the command on
the subscriber cannot be applied, an error is returned, replication across the entire subscription is
suspended, and you can manually change the table definition and replication will be restored without
data loss. In many cases, you can change table definitions on the subscriber first, and then on the
published table, and replication will not be interrupted.
4)In the database where the tables selected for replication are located, create a publication or
publications using the CREATE PUBLICATION command . A publication can include tables only from its
own database.
5)On the database with tables to which changes will be replicated, create a subscription or
subscriptions using the CREATE SUBSCRIPTION command .

369Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Set the value of the wal_level=logical parameter on
the master and the physical replica to which the subscription
will be connected (changing the parameter requires
restarting the instance)

• select tables for replication
• check for primary keys or choose a method for identifying

rows
• create tables in the recipient databases
• create publications based on the source database
• create subscriptions on the receiving databases and select

subscription parameters

Steps to create logical replication

Creating a publication

After identifying the tables that should be included in the same publication because these tables are used in
transactions at the same time, or are related by foreign keys, or logically must have time-consistent data
(different publications may have different time lags), you can issue commands to create the publications.

Why not create one publication? The average size of rows in tables may vary. If there are tables with large rows,
then changes in these rows will be transmitted to subscribers, and the network bandwidth may be limited and
processing and applying to the subscription tables of all transmitted changes for all tables with a large volume of
changes can create a significant replication lag in some time ranges. If you split the tables, for example, into two
publications, and include tables with small rows in one, then the replication lag for them may be smaller and
fluctuate within small limits. There are no universal means to determine how to split tables into several
publications; you need to know how the application works with tables.

A publication name must be unique within its database. Creating a publication does not initiate replication. It only
defines grouping and filtering logic for future subscribers. All tables added to a publication that publishes UPDATE
and/or DELETE operations must have a REPLICA IDENTITY defined. Otherwise, these operations will be prohibited
for those tables. For the MERGE and , the publication will publish an INSERT, UPDATE, or DELETE for each row
inserted, updated, or deleted. COPY commands are published as INSERT operations. For the MERGE and INSERT..
ON CONFLICT commands, the publication will publish the actual operation on each row.

In the CREATE PUBLICATION command you can specify:
1)FOR ALL TABLES - replicates changes to all tables in the database, including tables created in the future
2)FOR TABLES IN SCHEMA - replicates changes to all tables in the specified list of schemas, including tables
created in the future
3)FOR TABLE - a list of tables. If the word ONLY is specified before the table name , then only this
table is added to the publication. If the word ONLY is not specified, then the table and all its descendants are
added to the publication. After the table name, you can specify the names of the columns, then only the values of
these columns (and the columns - row identifiers) will be replicated. By default, all columns are replicated,
including those that will be added in the future. The WHERE option can be used to specify a filter to publish
changes not in all rows, but only those changes that satisfy the specified condition. The list of tables can be
empty. Tables can be added later using the ALTER PUBLICATION command.
4)In the WITH () option , you can specify values for two options. In the publish option, which row actions will
be replicated: insert, update, delete, truncate . For partitioned tables, there is the
publish_via_partition_root option

https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createpublication.html

370Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Creating a publication

• select tables to be included in one publication
• You can specify which commands will be replicated: inserts,

changes, deletions of rows, truncation of tables
• The publication may include:

› all database tables
› all tables in diagrams
› list of tables

• When specifying a list of tables, you can specify a set of
columns and a filter for rows

Create a subscription

Once a publication has been created, subscriptions can be created on the databases containing the
tables where changes will be replicated. Subscriptions are added with the CREATE SUBSCRIPTION
command and can be suspended/resumpted at any time with the ALTER SUBSCRIPTION command,
and also removed with the DROP SUBSCRIPTION command .
Each subscription has its own logical replication slot in the publication database. When a subscription

is created, an initial synchronization is performed by default, that is, existing rows in the source tables
are copied to the subscription tables, using additional logical replication slots that are deleted after the
synchronization is complete.
Publication tables are mapped to Subscriber tables by name. Replication to tables with different names

on the Subscriber side is not supported. Table columns are also mapped by name. The order of
columns in the Subscriber table may differ from the order of columns in the publication. The column
types may also differ; the ability to convert the text representation of the data to the target type is
sufficient. The target table may also contain additional columns that are not present in the published
table. Such columns will be populated with default values specified in the target table definition or by
triggers.
Each active subscription receives changes from its replication slot created on the publishing side. The

subscription and the logical replication slot can be managed separately from each other. For example,
you need to move the subscriber tables to another database (in the same cluster or another) and
activate the subscription there. First, the ALTER SUBSCRIPTION command breaks the connection
between the subscription and the slot. Then the subscription is deleted, the slot remains. Then the data
is reloaded to another database and a subscription is created with the create_slot=false
parameter , and is associated with the existing slot.
Just like physical slots, logical slots hold log files. If a slot is not going to be used, it must be deleted,

both physical and logical.
https://docs.tantorlabs.ru/tdb/en/17_5/se/logical-replication-subscription.html

371Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The subscription is created in the database where the
change receiver tables are located.

• Each subscription must use its own logical replication slot in
the primary database.

• The source and destination tables and their columns are
matched by name and must be the same.

• The destination table may have additional columns. They can
be populated with default values or triggers.

Create a subscription

Create a subscription

CREATE SUBSCRIPTION command creates a subscription. The subscription name is unique within the database
where it is created. Subscription creation parameters:
1)CONNECTION 'string' connection to the publication database
2)PUBLICATION publication names separated by commas
3)WITH (parameter= value, ...). There are more than a dozen parameters, they are described in the
documentation. The main parameters are:

connect is true by default. Whether to connect to the publication database. If set to false, the create_slot,
enabled, copy_data parameters will also be false
create_slot = true by default. Whether to create a logical replication slot
enabled = true by default. Whether to start the subscription or leave it inactive
copy_data = true by default. Whether existing rows of tables to which subscription is made will be copied.

For large amounts of data, copying to one thread can take considerable time
slot_name is the same as the subscription name by default. It is worth setting up subscription naming rules so

that their names are unique across all clusters. If you set the value to NONE, you need to set enabled=false
and create_slot=false
binary by default false. This parameter allows to speed up initial synchronization and replication at the

expense of less compatibility
streaming = off by default, data starts to be transferred to the subscription after the transaction is

committed. When set to on, transaction data starts to be transferred immediately and is written to temporary files
on the cluster with the subscription, and starts to be applied after the transaction is committed in the publishing
database. When set to parallel, changes start to be applied immediately by the background parallel worker
process. If there is no free process (their number is limited by the max_logical_replication_workers and
max_worker_processes parameters), then the behavior is the same as for the on value. If transactions
process large amounts of data, setting these values allows you to reduce the replication lag , since changes start
to be transferred and applied without delay. The lag reduction that can be expected is 30-50%.
synchronous_commit = off by default. Overrides the value of the configuration parameter of the same name

for transactions that apply changes to the subscription database. The off value is safe for logical replication,
since if the subscriber loses transactions, they will be retransmitted.
disable_on_error = false by default. If set to true, if an error is detected on the subscription side, the

subscription is put into the disabled state. If true, periodic attempts are made to apply the change, in case the
error disappears.
origin=any by default, publishing sends all changes. If bidirectional replication is used, then origin=NONE

should be set to prevent loops ("ping pong", echo).
https://docs.tantorlabs.ru/tdb/en/17_5/se/sql-createsubscription.html

372Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When creating a subscription, a connection string to the
publication database is specified.

• You can specify several publications in one subscription if
they are in the same database.

• When creating a subscription, rows from publication tables
can be copied to destination tables.

• Logical replication only works through a slot
• The slot can be created in advance and specified when

creating a subscription.
• The slot can be created when creating a subscription
• By default, the slot name is the same as the subscription

name.

Create a subscription

Load per instance

walsender process is started on the source cluster , one process for each subscription, which in turn
uses a separate replication slot. The use of a logical replication slot is mandatory. Their number is
limited by the max_wal_senders and max_replication_slots parameters . Changing the
parameters requires restarting the instance. The walsender process reads the log files, but unlike
physical replication, it does not simply transfer log records, but processes them. First, the walsender
process accumulates changes made by each transaction in its local memory (reorderbuffer). By
default, a subscription is created with the streaming=off parameter . This means that only
committed transactions should be replicated, which is what the buffer is used for. If the volume of
changes exceeds the logical_decoding_work_mem value (the conservative value of 64 MB
by default), the changes will be written to files in the PGDATA/pg_replslot/slot_name directory
. Also, if the accumulated number of changes in one transaction exceeds 4096 , then the changes of
this transaction will also start to be written to the file. The value is chosen large enough to cut off OLTP
transactions from transactions with mass row changes.
The buffering logic can be changed using the debug_logical_replication_streaming
configuration parameter .
The data accumulated in the buffer on committed transactions (or uncommitted ones if streaming =
on or parallel) are transferred to the output module pgoutput . The module is a separate
process, and the code that executes is walsender. The operation of this module is affected by the
subscriber's major software version number, the subscription's binary parameter (by default,
binary = off and the conversion of changes to transactions in the form of text strings is used);
streaming - if the value is parallel , additional information is transferred, origin (it is the module that
filters transactions generated by logical replication processes) and other parameters that are set in the
subscription properties.
https://docs.tantorlabs.ru/tdb/en/17_5/se/protocol-logical-replication.html#PROTOCOL-LOGICAL-

REPLICATION-PARAMS

373Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• For each subscription, a walsender process is started , which
performs buffering and logical decoding.

Load per instance

publication

subscriptions

subscriptions

walsend
er

walsend
er

buffer

buffer

Getting log data from a replica

Knowledge of the logical replication architecture allows you to understand the complexity of data processing on
the source cluster, estimate the load on memory, processor (due to the large number of walsender processes)
and disk I/O (reading log files by each walsender process and writing to files in the PGDATA/pg_replslot
directory). The load on the host where the walsender processes that service logical replication are running
can be significant.

If you have physical replicas, it makes sense to move all the work performed by walsender processes to the
physical replica side. In PostgreSQL's logical replication architecture, most of the change processing is performed
by walsender, not on the receiver side.

To obtain data from a physical replica, you need to:
1)in the publication, specify the replica address in the connection parameter
2)the replica must be hot (hot_standby=on)
3)enable feedback (hot_standby_feedback=on) , otherwise autovacuum can clear the required
subscription row versions in the system catalog tables and the slot will stop working, replication will stop
4)between the replica and the master you need to use a physical replication slot
the CREATE SUBSCRIPTION command does not return a prompt for a long time, you can execute the function

on the master: select pg_log_standby_snapshot() . To create a logical replication slot, you need a snapshot
(a list of all active transactions on the master). The replica does not have access to transactions on the master
and is forced to wait until the checkpointer or bgwriter process on the master writes a snapshot to the
log. If the prompt does not return after executing the function, it means that the initial synchronization of table
rows is used (copy_data = true) and the data volume is large. The initial synchronization is performed
through an additionally created logical replication slot, which will be deleted when the copying of rows is
complete.

What happens if the master fails and the replica is promoted to master? Logical replication will continue to work
without changes. Replication slots (logical and physical) in Tantor Postgres are preserved after role changes.

https://docs.tantorlabs.ru/tdb/en/17_5/se/logicaldecoding-explanation.html

374Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When creating a subscription, it is enough to specify the
address of the physical replica:
CREATE SUBSCRIPTION s CONNECTION 'dbname=name
host=replica port=replica' PUBLICATION p;

Getting log data from a replica

master replica

subscriptions

subscriptions

walsend
er

walsend
er

walsend
er

buffer

buffer

Conflicts

For each subscription, a logical replication worker process is started. This process connects to the walsender
process via the replication protocol and receives a stream of changes decoded by the output module. Changes
are made by INSERT, UPDATE, DELETE commands row by row: using the REPLICA IDENTITY row
identifier . If the generated commands cannot make changes due to integrity constraint violation or for
another reason (for example, a trigger fires and generates an unhandled exception, there are no privileges to
execute the command), then replication in the entire subscription is suspended and will resume after the problem
is fixed if the value of the subscription parameter disable_on_error=false . The occurrence of an error is
called a "conflict".

If an UPDATE or DELETE command is executed and a row is missing (that is, zero rows were updated or
deleted), then this is not an error and there is no conflict, the command is skipped and replication continues to
work.

There is no functionality to create rules by which the conflict is resolved (automatic conflict resolution).
Information about the error can be seen in the cluster log. The error indicates the LSN containing the COMMIT of
the transaction to which the change that violates the constraint pertains.

You can resolve the conflict manually by changing the data or object definition: by changing the line with which
the conflict arose, removing the integrity constraint, disabling the trigger, granting privileges. The second option:
skip (do not apply) the transaction in which the command that caused the error is executed. This is done with the
ALTER SUBSCRIPTION command name SKIP (lsn = LSN) . When the entire transaction is skipped (whose LSN
with COMMIT is specified in the command), all changes made by the transaction are skipped, including those that
do not violate any constraints.
the streaming=parallel subscription parameter , then the LSN of failed transactions can be written to the

cluster log. In this case, you can change the value to on or off and resume replication.
https://docs.tantorlabs.ru/tdb/en/17_5/se/logical-replication-conflicts.html

375Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Conflict - if the logical replication worker process cannot
make changes due to integrity constraint violation or other
reason

• replication across the entire subscription is suspended
• There is no automatic conflict resolution.
• You can resolve the conflict by manually changing the data

or skipping (not applying) the transaction in which the
command that caused the error is executed.

• Information about the error appears in the cluster log.

Conflicts

Bidirectional replication

Bidirectional replication - two or more sets of tables are sources of changes and receivers for each
other. The directions of replication are configured independently, but the settings are usually the same.
For two sets of tables, two publications and two subscriptions are created. For three sets, three and
three.
When setting up bidirectional replication, the greater the lag, the greater the likelihood of conflicts. To

avoid conflicts, horizontal or vertical "partitioning" is used. With horizontal, at the application level, each
node is assigned rows that can be changed or inserted into the table. For example, depending on the
value in the table column. For example, two databases in two cities. Sessions with databases change
and insert rows related mainly to their cities. There are no restrictions on the database side, and if an
application in one city stops working, clients can be directed to an application in another city, and it will
work with any rows. With vertical "partitioning", which is used less often, each node can make changes
to its own set of columns.
The goal of bidirectional replication is not to improve performance, but to provide fault tolerance.
When using sequences to generate primary key values in tables involved in bidirectional replication for

two nodes, configure the sequences so that on one node the sequence produces even numbers and on
the other node it produces odd numbers.
the origin=NONE option on all subscribers .
Local commands (in local sessions) have origin= NONE . Setting this to NONE means that the

publication will forward changes that do not have an origin, i.e. those made by local transactions, to the
subscription, rather than by the logical replication worker. This avoids loops in bidirectional replication.
https://docs.tantorlabs.ru/tdb/en/17_5/se/replication-origins.html

376Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• If you change the values of these parameters on the master, then
on the replicas these values must match the values on the master.

• Changes to these parameters are recorded in the log.
• if the replica detects that the value on the master has become

greater, then the overlay of log records will be suspended or the
replica instance will be stopped

• List of parameters:
• max_connections, max_prepared_transactions,

max_locks_per_transaction limit the maximum number of object-
level locks

• max_walsenders
• max_worker_processes

Bidirectional replication

Demonstration

Unidirectional replication
Bidirectional replication

377Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Unidirectional replication
• Bidirectional replication

Demonstration

Practice

Table replication
Replication without primary key
Adding a table to a publication
Bidirectional replication

378Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. Table replication
2. Replication without primary key
3. Adding a table to a publication
4. Bidirectional replication

Practice

379Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Tantor Platform Review

9

Use cases

Let's consider what two approaches to diagnostics and optimization of PostgreSQL DBMS
performance might look like.
Classic scenario
You have a monitoring system that has registered a sharp drop in your database performance. The

first thing you do is look at the CPU, RAM, and disk subsystem metrics to see where the problem lies.
You determine that the bottleneck is in the processor.
Next, you connect to the database server via SSH. Once you open a terminal, you typically run the psql

client and start analyzing system views such as pg_stat_statements to determine which queries are
most expensive.
After analyzing the system views, you look through the database logs to find query plans that are

created using the auto_explain extension. You copy the query plan you are interested in and paste it
into the online visualizer for further analysis. There, you identify problematic operations in the query,
such as Seq Scan instead of Index Scan.
Ultimately, based on the information collected, you make an optimization decision: for example, adding

an index or rewriting a problematic SQL query.
Advanced scenario using the Tantor platform
If you have access to the Tantor Platform, everything becomes even easier and faster. You open a

web browser, go to the Platform and select the database you want to monitor. There you will quickly
get a list of the most resource-intensive queries.
You view the database logs directly in the Platform interface for the time interval you are interested in.

The next step is to analyze the visual query plan, which is also available in the interface.
One of the benefits of the Tantor Platform is the optimization recommendations. After reading them,

you immediately understand what actions to take to solve a performance problem. By making a
decision based on these recommendations, you save time and effort that would normally be spent on
manual analysis and diagnostics.
In conclusion, although the classical approach requires more thorough and expensive analysis, it can

be useful for understanding the nuances of the DBMS operation. However, specialized tools such as
the Tantor platform offer a fast and convenient way of optimization that is ideal for complex and large
systems.

380Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Use cases
Classical

1.View the existing monitoring system, localize
the bottleneck (CPU, RAM, Disk)

2.Connect to the server via ssh

3.psql terminal client

4.Analyze statistics based on system views (
pg_stat_statements)

5.Find query plans in DB log files (auto_explain)

6.Place the query plan of interest in the online
visualizer

7.Identify problematic operations in a query

8.Make a decision

Advanced

1.Open Tantor platform in browser

2.Select the monitored DB centrally

3.Localize the list of most resource-
intensive queries

4.Open the DB log for the time interval of
interest

5.Open visual query plan

6.Read the optimization recommendations

7.Make a decision

Monitoring tools

In today's world, DBMS performance monitoring is a critical component to ensure the reliability and
efficiency of any application or complex infrastructure.
PostgreSQL is one of the most powerful and flexible DBMS, but its full potential can only be realized

with the right monitoring tools.
There are many general-purpose monitoring systems, such as Zabbix, Grafana, OKMeter, New Relic,

Munin, Cacti, and Datadog. They provide a wide range of features for monitoring various aspects of
infrastructure and applications. However, precisely because of this “generality,” they are often not
adapted to work with the specific features and metrics of PostgreSQL. This means that they may not
provide all the information you need in the most convenient form, which can be an obstacle to
performance optimization.
On the other hand, there are specialized solutions, such as the Tantor Platform, which is designed

specifically for PostgreSQL monitoring. This system knows which metrics are most important for the
DBMS, how to collect them, and how to interpret them adequately. As a result, you get a detailed and
complete picture of the state of your database: from query performance to disk load and memory
usage.
Using a specialized solution like the Tantor Platform gives you the opportunity to make a qualitative

leap in PostgreSQL performance tuning and monitoring. With this tool, you will be able to not only
quickly identify bottlenecks and problems in your system, but also perform more precise tuning of
DBMS parameters to achieve maximum efficiency.
In conclusion, choosing the right monitoring system is not just a matter of convenience, it is a matter

that directly affects the efficiency of your application and, as a result, your business. Therefore,
investing in specialized tools often pays off in the form of increased productivity and reduced
troubleshooting time.

381Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Monitoring tools

Platform "Tantor"General-purpose monitoring systems not
adapted for PostgreSQL

Tantor Platform

The platform is a functional software with a graphical user interface, installed, as a rule, within the
customer's premises, it is created for convenient administration of PostgreSQL clusters.
With the help of the Tantor Platform, you can manage not only the Tantor cluster database, but also

any other DBMS based on PostgreSQL, including the classic version.
The Tantor platform is necessary for organizations that use multiple databases, each of which serves

a specific information system or service. Since each system has its own characteristics, different types
of load and data - this makes the database a complex element of the corporate information system.
Consequently, employees bear great responsibility for the normal functioning of the DBMS, and the
Tantor Platform simplifies their daily work.
Due to the departure of international IT vendors from the Russian market, a large number of Russian

companies, from small to large businesses, and all sectors of the economy, are switching to Russian
analogues.
In all companies where there are IT services and DBMS are used, there is a need to administer a large

number of database management systems.
https://docs.tantorlabs.ru/tp

382Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Functional software with a graphical user interface, created
for convenient administration of PostgreSQL clusters

• Necessary for organizations that use multiple databases,
each of which serves a specific information system or
service

• Russian companies are switching to Russian analogues

Tantor Platform

User settings

In the Tantor Platform, user and group management is organized through the administration module,
which allows various operations. The main functions include adding, activating, deactivating and
deleting users. Options for managing user rights are also available, including transferring administrator
rights. Additionally, it is possible to manage user groups by adding new groups and managing their
membership, as well as integrate the system with Active Directory, ALD Pro and other LDAP-based
directory services for deeper integration with corporate accounts.

383Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Managing users and their roles

User settings

TantorLabs.ru

Workspaces

A workspace in the Tantor Platform is a web interface designed to manage PostgreSQL server
instances. It allows users to organize and manage different database instances that reside in one or
more workspaces.
Within a workspace, you can create new instances, administer existing ones, and perform various

management and monitoring operations. Each PostgreSQL server instance in a workspace is designed
to manage one or more databases. Creating a new workspace requires a user role with administrative
rights and is done through the Platform interface using a special input form.
The primary benefit of using Tantor Platform workspaces is the ability to centrally monitor and manage

all of an enterprise's PostgreSQL database clusters. This enables unified management of all database
resources, which is critical for large organizations looking to optimize and improve the efficiency of
their IT operations.
Centralized management simplifies the process of configuring, monitoring, and maintaining multiple

PostgreSQL instances, providing:
Quick access to all the information you need about the status of each instance and cluster.
Proactive management and monitoring that allows you to respond promptly to potential problems or

changes in the operation of databases.
Simplify the process of scaling and adding new instances and clusters without the need for significant

system reconfiguration.
This makes workspaces an indispensable tool for ensuring the reliability, availability, and performance

of databases in an enterprise environment.

384Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Managing PostgreSQL instances and Patroni clusters

Workspaces

TantorLabs.ru

Instance review

On the instance overview page in the Platform, tiles provide a visual representation of key information
about the database instance. Each tile provides an overview of a specific aspect of the instance, such
as CPU load, memory usage, disk space, and active sessions and processes. Tiles can be configured to
display data for different time intervals and include hover details, allowing you to quickly drill down to
detailed information without having to navigate to other pages.
The Instance page opens a menu with modules for managing and monitoring the database instance.

The menu includes the following modules:
Overview: General information and performance metrics of the instance.
Configuration: Instance settings.
Maintenance: Maintenance tools.
DB Inspector: Tools for analyzing database structure.
Query Profiler: Profiler for query analysis.
Current Activity: Displays the current activity.
Replication: Manage replication settings.
Tablespaces: Managing tablespaces.
Charts: Monitoring charts.
Monitoring Config: Monitoring system settings.
Advanced Analytics: Tools for advanced data analysis.
Tasks: Scheduler for running delayed tasks on DBMS instances

385Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Consolidate all important information about a PostgreSQL
instance and present it
in a simplified form

Instance review

TantorLabs.ru

Patroni cluster

Working with Patroni clusters on the Tantor Platform covers various aspects of management and
monitoring. The Clusters tab allows you to see all clusters in the workspace, their status, Patroni
version, and resources such as CPU and memory. You can drill down to detailed information about
each cluster, monitor clusters, configure them, and manage maintenance. For each cluster, you can
view, monitor, pause/maintain, and configure functions. Cluster information includes data about each
instance, their roles, and statuses.

386Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Visualization and intuitive management of Patroni clusters

Patroni cluster

TantorLabs.ru

Query Profiler

The Query Profiler on the Tantor Platform uses the pg_stat_statements extension to collect statistics
on PostgreSQL queries. The main function of this tool is to identify and analyze slow queries. The
profiler allows you to select different time intervals to display data, offers detailed metrics such as
query execution time, number of calls, CPU time, and IO. It also includes visualizations such as graphs,
and provides the ability to view query details, including text and execution plan.
The Tantor Platform's Query Profiler allows users to deeply analyze the performance of SQL queries. It

helps in query optimization by providing data on execution time, memory usage, and the number and
types of I/O operations. Using this information, developers and database administrators can identify
and eliminate inefficient queries, which leads to improved overall system performance.
In addition, the Query Profiler has the ability to compare query performance over time, allowing you to

track the impact of changes to your code or data structure on database performance. This feature
becomes an invaluable tool when testing changes and evaluating their effectiveness.

387Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tracking query execution parameters and their plans for a
selected period of time.

• Analysis and identification of problematic queries in the
database

Query Profiler

TantorLabs.ru

Replication

The Replication module on the Tantor Platform provides detailed monitoring of PostgreSQL replication.
It includes two main tabs: STANDBY'S for managing replicas and SLOTS for managing replication slots.
On the STANDBY'S tab, the user can see a list of replicas with their statuses and access to detailed
information about each replica. The SLOTS tab displays a list of replication slots with their activity and
status. These tools help optimize the replication process and ensure reliable data synchronization.
Additionally, the Replication module on the Platform allows you to monitor replication parameters in

real time, which includes tracking replication delays and synchronization statuses. This is a key element
for maintaining data integrity and minimizing the risk of data loss in the event of a primary server failure.
Effective replication management helps ensure high availability and reliability of databases.

388Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Displaying the replication status on the Primary server and on
the Standby server

Replication

TantorLabs.ru

Tablespaces

The Tablespaces module is designed to effectively monitor the space usage of tablespaces in a
database. It compares the disk size with the size of each tablespace, which provides a more detailed
view of the amount of space occupied by each part of the database.

389Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Monitoring the space occupied by tablespaces
in a database

Tablespaces

TantorLabs.ru

Notifications

The Alerts module is designed to create notifications about critical situations in the database. It
provides the ability to monitor changes in the status of alerts, allowing you to quickly respond to
important events in the database. This tool provides effective notification of possible problems, which
allows you to quickly and accurately respond to changes in the operation of the database.

390Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Generating notifications about critical situations with the
database

Notifications

TantorLabs.ru

Monitoring configuration

In the Tantor Platform, the monitoring configuration module allows you to set up database monitoring,
manage alert triggers, and configure alert conditions based on collected PostgreSQL metrics. This
includes selecting databases to monitor, setting triggers for warnings, problems, and recovery, and
saving changes to activate the configured monitoring parameters. The tool provides the ability to fine-
tune monitoring parameters to effectively manage database performance and security.

391Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Setting up lists of databases for monitoring.
• Setting up triggers for each database

Monitoring configuration

TantorLabs.ru

Analytics

Advanced analytics on the Tantor Platform allows for detailed analysis of database server
performance. It covers slow query analysis, blocking, errors, system actions, and logs. It includes
sections for megaqueries and query problem diagnostics, allowing users to monitor performance and
identify bottlenecks. The interface offers graphs and host summaries, making real-time monitoring and
analytics easy.

392Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Collection, analysis and visualization of events from database
logs

Analytics

TantorLabs.ru

Background process activities

The "Current Activity" module on the Tantor Platform displays detailed information about user and
system database processes in real time. This includes monitoring of active, waiting and blocking
sessions. For each process, parameters such as CPU usage, memory, read/write speed and process
status are shown. The "TERMINATE" function allows you to terminate processes directly through the
interface. All data is updated every five seconds and can be "frozen" for easy analysis.
The Current Activity module also offers convenient filters for sorting and searching processes by

various parameters, such as user name, database, or session state. This makes it a powerful tool for
quickly identifying and resolving database problems, especially in high-load environments where
immediate intervention can prevent long downtimes or system failures.

393Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Online monitoring of user sessions status in PostgreSQL
database

Background process activities

TantorLabs.ru

Settings

The Settings module on the Tantor Platform provides a convenient interface for viewing and modifying
the postgresql.conf configuration file, as well as the configuration of the Patroni cluster software. It
automatically recommends optimal values for various parameters, allows you to apply these values, and
requires a reboot or restart of the instance for the changes to take effect. The interface also provides
color coding for easy identification of the status of parameters: default, changed, and requiring a
reboot or restart. Users can filter parameters by status and category for ease of management.
In addition, the Settings module provides the ability to save and restore previous configurations,

allowing you to easily roll back changes if necessary. This feature is especially valuable when testing
new settings in a production environment, ensuring that you can safely experiment while minimizing the
risk of failure.

394Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• View and modify the postgresql.conf configuration file
and the Patroni cluster software configuration

Settings

TantorLabs.ru

Data schema analysis

The Database Inspector module on the Tantor Platform allows you to analyze the PostgreSQL
database schema. Using HEALTHCHECKS, you can identify potential problems such as unused or
redundant indexes, large tables, or non-optimal settings. The user has access to details of each
problem, with the ability to apply recommended changes directly through the interface. This tool helps
improve database performance and ensure its correct configuration.
In addition to the core functionality, the Platform's Database Inspector allows administrators to view

detailed characteristics of each table and index, including information on the number of rows, space
occupied, and read/write activity. This provides useful data for optimizing and reorganizing data,
improving overall database performance.

395Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• PostgreSQL Database Schema Analysis

Data schema analysis

TantorLabs.ru

Routine maintenance

The Tantor Platform Maintenance module manages PostgreSQL database maintenance tasks, such as
fixing table and index bloat and eliminating transaction counter overflows. Users can select specific
actions to fix problems and run VACUUM, REINDEX, or ANALYZE commands to optimize database
performance. Maintenance history provides access to details and results of past operations.
The Maintenance page also allows you to set up automated scheduled tasks to improve the efficiency

of your maintenance operations. This includes the ability to schedule tasks on a regular basis, which
helps keep your database in an optimal state without the need for constant administrator intervention.

396Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Fix table and index bloat and eliminate transaction counter
overflow

Routine maintenance

TantorLabs.ru

Task Scheduler

The Tasks module on the Platform allows users to automate and schedule various operations. It can be
used to schedule actions, including running system commands or SQL scripts. This functionality is ideal
for automating routine database management tasks such as updates, backups, or cleanup procedures,
increasing efficiency and reducing the likelihood of errors through process automation.

397Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Automation and planning of various operations. Setting up the
launch of actions according to a specified schedule, includes
the execution of system commands or SQL scripts

Task Scheduler

TantorLabs.ru

Tantor Platform Course

The capabilities of the Tantor Platform are explored in a 2-day training course.
Course topics:
1. Introduction
2. Preparation for work
3. Monitoring
4. Configuration and maintenance tasks
5. Installation
https://tantorlabs.ru/educationcenter

398Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The capabilities of the Tantor Platform are explored in the
training course
› course duration 2 days

• Course topics:
› Introduction
› Preparing for work
› Monitoring
› Configuration and maintenance tasks
› Installing the Platform and Agent

Tantor Platform Course

399Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Tantor Postgres 17.5 New Features

10

Tantor Postgres - PostgreSQL branch

Tantor Postgres DBMS is a fork of PostgreSQL and:
1) includes all the features of "vanilla" (main branch) PostgreSQL
2) includes features that will appear in future versions of PostgreSQL. The process of accepting

(committing) changes that add functionality (patches) to the main PostgreSQL branch is long and can
take several years. Changes that are useful and have no drawbacks are added to Tantor Postgres
before they appear in the main PostgreSQL branch. Example: the pg_uuidv7 extension will appear in
PostgreSQL version 18 appeared in Tantor Postgres version 16.8; parameters setting the sizes of SLRU
buffers (transaction_buffers, subtransaction_buffers, etc.), timeouts (transaction_timeout), which
appeared in the main branch of version 17 were added to Tantor Postgres version 15; extended use of
SIMD processor instructions, which will appear in PostgreSQL version 18, appeared in Tantor Postgres
version 17, and began to be implemented since Tantor Postgres version 15.
3) additional extensions. Extensions that are easy to port (rebase) to new major versions of

PostgreSQL are added to the standard (contrib) extensions: they do not have compiled code, do not
have a very large amount of code, do not have many interactions with the main code or have popular
functionality. Many useful extensions and utilities are not included in the main branch, but are added to
Tantor Postgres. For example, pg_hint_plan (optimizer hints), pg_columnar (clone storage), pg_ivm
(updatable materialized views), pg_background (use of background processes), pgcopydb,
pgcompacttable, pg_repack utilities
4) changes in the PostgreSQL core that are needed for high-load DBMSs and are so complex that

adding them to the main branch has been postponed for many years: a 64-bit transaction counter,
autonomous transactions, improvements for compatibility with 1C:ERP and other programs that
generate complex queries.
5) own modifications of PostgreSQL code, extensions, utilities . Modifications are offered in the form

of patches to the community, are issued as free projects (https://github.com/TantorLabs) by their
authors.
https://docs.tantorlabs.ru/tdb/en/17_5/se/differences.html

400Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Tantor Postgres DBMS includes:
• all the features of "vanilla" PostgreSQL
• features coming in future versions of PostgreSQL
• additional extensions and utilities
• changes in the PostgreSQL core that are needed for high-

load DBMS and applications that generate complex queries
(1C:ERP)

• own improvements

Tantor Postgres - PostgreSQL branch

Improvements in Tantor Postgres

The modifications allow for improved performance and fault tolerance during industrial operation.
Improvements are made so that Tantor Postgres is minimally different from the main PostgreSQL

branch: the implementation is chosen that has the highest probability of appearing in the main branch
or that least changes the PostgreSQL code and its default settings. For example, pg_controlcluster
wrappers are not used, changes are made disabling (configuration parameters
enable_group_by_reordering, enable_temp_memory_catalog and others). Tantor Postgres strives to be
compatible with PostgreSQL and not differ in terms of operation.
Tantor Labs avoids modifications that could tie applications ("vendor lock") and make it difficult for

applications to work in vanilla PostgreSQL.
When administering Tantor Postgres, you can apply your PostgreSQL administration experience. Your

Tantor Postgres administration experience will be useful for working with PostgreSQL, including future
versions.

401Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The modifications allow for improved performance and fault
tolerance during industrial operation.

• Improvements are made so that Tantor Postgres is minimally
different from the main branch of PostgreSQL
› the implementation that has the highest probability of appearing

in the main branch is selected
› least changing PostgreSQL code and its default settings

• When administering Tantor Postgres, you can apply your
PostgreSQL administration experience.

• Tantor Labs avoids modifications that could tie applications
("vendor lock") and make it difficult for applications to work
in vanilla PostgreSQL

Improvements in Tantor Postgres

Additional configuration options

Some improvements in the Tantor Postgres SE and SE 1C kernel have been made disableable by
parameters.
Tantor Postgres SE parameters that affect the creation and selection of query execution plans:
postgres=# \dconfig enable_*
Parameter | Value
---------------------------------------+-------
enable_convert_exists_as_lateral_join | on
enable_convert_in_values_to_any | on
enable_group_by_reordering | on
enable_index_path_selectivity | on
enable_join_pushdown | on
enable_self_join_removal | on
Tantor Postgres SE parameters that affect functionality:
backtrace_on_internal_error | off
enable_delayed_temp_file | off
enable_large_allocations | off
enable_temp_memory_catalog | off
libpq_compression | off
wal_sender_stop_when_crc_failed | off
pg_stat_statements.sample_rate | 1
pg_stat_statements.mask_const_arrays | off
pg_stat_statements.mask_temp_tables | off
The parameters added in version 17.5 are highlighted in blue , and those added in version 16 are

highlighted in green .
Parameters introduced in PostgreSQL version 17:
allow_alter_system, commit_timestamp_buffers, huge_pages_status, io_combine_limit,
max_notify_queue_pages, ultixact_member_buffers, multixact_offset_buffers,
notify_buffers, restrict_nonsystem_relation_kind, serializable_buffers,
subtransaction_buffers, summarize_wal, sync_replication_slots,
synchronized_standby_slots, trace_connection_negotiation, transaction_buffers,
transaction_timeout, wal_summary_keep_time.
Параметры, удаленные в 17 версии: db_user_namespace, old_snapshot_threshold,
trace_recovery_messages

402Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres 17.5 has 15 additional parameters that affect the
creation and selection of query plans and functionality:

• Parameters introduced in PostgreSQL version 17:

Additional configuration options

postgres=# \dconfig enable_*
Parameter | Value

--------------------------------------+------
enable_convert_exists_as_lateral_join | on
enable_convert_in_values_to_any | on
enable_group_by_reordering | on
enable_index_path_selectivity | on
enable_join_pushdown | on
enable_self_join_removal | on

backtrace_on_internal_error | off
enable_delayed_temp_file | off
enable_large_allocations | off
enable_temp_memory_catalog | off
libpq_compression | off
wal_sender_stop_when_crc_failed | off
pg_stat_statements.sample_rate | 1
pg_stat_statements.mask_const_arrays | off
pg_stat_statements.mask_temp_tables | off

allow_alter_system, commit_timestamp_buffers, huge_pages_status, io_combine_limit,
max_notify_queue_pages, ultixact_member_buffers, multixact_offset_buffers, notify_buffers,
restrict_nonsystem_relation_kind, serializable_buffers, subtransaction_buffers,
summarize_wal, sync_replication_slots, synchronized_standby_slots,
trace_connection_negotiation, transaction_buffers, transaction_timeout, wal_summary_keep_time

Расширения Tantor Postgres SE и SE 1C

Tantor Postgres SE and SE 1C kernels are unified. All features and extensions of the Tantor Postgres
SE 1C build are in the Tantor Postgres SE build. In particular, a 64-bit transaction counter, autonomous
transactions, optimized pglz data compression algorithm , expanded use of SIMD instructions of
central processors.
Some of the changes in the kernel are made by adding options to SQL commands: ALTER TABLE t
ALTER COLUMN c SET STATMULTIPLIER 100; in addition to SET STATISTICS .
In addition to the standard vanilla PostgreSQL extensions, the Tantor Postgres SE and SE 1C

distribution package includes:
расширения: credcheck, cube, fasttrun, fulleq, hypopg, mchar, page_repair,
pg_cron, pg_hint_plan, pg_repack, pg_stat_kcache, pg_store_plans, pg_trace,
pg_uuidv7, pg_wait_sampling, pgaudit, pgaudittofile, transp_anon
библиотеки: dbcopies_decoding, oauth_base_validator, online_analyze, pg_query_id,
pg_stat_advisor, plantuner, wal2json
utilities: pgcompacttable, pgcopydb , pg_diag , pg_repack .
The standard delivery includes the following programs in separate packages: pg_anon, wal-g,
pg_configurator, pg_cluster, pg_diag_setup , pg_sec_check .
Tantor Labs releases and supports applications, utilities, extensions that are not included in the

standard delivery of the Tantor Postgres DBMS (for example, PostGIS, pgRouting) under a separate
agreement ("extension support certificates") , since porting extensions to the required DBMS version,
assembling for the required Linux operating system , testing extensions, and technical support are
complex. If the extension does not require modification and porting, Tantor Labs provides instructions
for self-assembly.
The following extensions have been added to the Tantor Postgres SE distribution package:
http, orafce, pgl_ddl_deploy , pgq, vector , pg_archive (addition to pg_columnar),
pg_columnar, pg_ivm , pg_partman, pg_qualstats, pg_tde , pg_throttle (improved for
cgroup use in linux), pg_variables, pg_background .
The parameters highlighted in blue are those that appeared in version 17.5 , and those highlighted in

green are those that appeared in version 16 of Tantor Postgres .
The improvements available in Tantor Postgres BE are listed in the documentation:
https://docs.tantorlabs.ru/tdb/en/17_5/ be /differences.html

403Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Ядра Tantor Postgres SE и SE 1C унифицированы
› все возможности и расширения SE 1C есть в SE

• Tantor Postgres SE и SE 1C включают:
› расширения credcheck, cube, fasttrun, fulleq, hypopg, mchar,

page_repair, pg_cron, pg_hint_plan, pg_repack, pg_stat_kcache,
pg_store_plans, pg_trace, pg_uuidv7, pg_wait_sampling, pgaudit,
pgaudittofile, transp_anon

› библиотеки dbcopies_decoding, oauth_base_validator,
online_analyze, pg_query_id, pg_stat_advisor, plantuner, wal2json

› утилиты pgcompacttable, pgcopydb, pg_diag, pg_repack

• The following programs are supplied in separate packages: pg_anon,
wal-g, pg_configurator, pg_cluster, pg_diag_setup , pg_sec_check

• Tantor Postgres SE additionally includes extensions:
› http, orafce, pgl_ddl_deploy , pgq, vector , pg_archive ,

pg_columnar, pg_ivm , pg_partman, pg_qualstats, pg_tde ,
pg_throttle , pg_variables, pg_background

Tantor Postgres SE and SE 1C Extensions

Query Optimizer Options

Tantor Postgres version 17 introduces parameters that can be used to enable additional query planner
optimizations. These optimizations were created by Tantor Labs to eliminate performance issues that
arise in real applications, mainly 1C:ERP. When investigating the problem, queries with non-optimal
plans were identified. With optimal plans, query execution time was reduced by orders of magnitude.
By default, optimizations are enabled. The parameters were added to provide flexibility in configuring
the planner and the ability to quickly check the effectiveness of optimizations.
enable_convert_exists_as_lateral_join allows the planner to convert subqueries with EXISTS

to lateral SEMI JOINs when possible. This conversion can improve performance in correlated
subqueries.
enable_convert_in_values_to_any enables a planner optimization that converts IN VALUES value

lists to ANY constructs. This can simplify query plans and provide more efficient execution paths.
enable_group_by_reordering Whether the query planner will create a plan that will provide

GROUP BY on columns sorted in column order corresponding to the columns on which the child node
of the plan returns sorted data. For example, during an index scan. When optimization is disabled, the
planner considers sort order only to service ORDER BY (if present).
enable_index_path_selectivity allows the planner to apply additional selectivity when

evaluating join paths using indexes . By default, the planner chooses a composite index created on
fewer columns because it is smaller in size and does not take into account that index entries point to a
large number of rows that do not match the join condition. This parameter allows you to choose a more
appropriate index.
enable_join_pushdown allows the planner to move inner joins into subqueries when doing so will

not change the result. This transformation may allow more efficient join paths to be used.
enable_self_join_removal replaces table joins with equivalent constructs that allow the table to

be scanned in a single pass. Affects regular (heap) tables only.

404Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres version 17 introduces 6 parameters that can
be used to enable query planning optimizations

• Optimizations allow to significantly reduce the execution time
of queries encountered in practice

• Parameters have been added to provide flexibility in
configuring the query optimizer.

• Optimizations
are enabled by default.

Query Optimizer Options

postgres=# \dconfig enable_*
Parameter | Value
--------------------------------------+------
enable_convert_exists_as_lateral_join | on
enable_convert_in_values_to_any | on
enable_group_by_reordering | on
enable_index_path_selectivity | on
enable_join_pushdown | on
enable_self_join_removal | on

pg_stat_advisor library

pg_stat_advisor - the library automatically detects queries where the planner underestimates or
overestimates the number of rows returned (actual rows differ from planned rows, which are
compared). If actual/planned or planned/actual >=
pg_stat_advisor.suggest_statistics_threshold, it automatically generates and executes the
CREATE STATISTICS ON command on the columns, and then executes the ANALYZE command to
update statistics. The type of statistics is not specified, so all types of statistics are created (mcv,
ndistinct, dependencies). The commands for creating statistics and updating statistics are run
asynchronously background worker process.
the shared_preload_libraries parameter .
Working conditions:
1. INSERT, UPDATE, DELETE are not supported, only SELECT and WITH
2. Node is not NestedLoop, MergeJoin, HashJoin
3. No data is created from the temporary table
4. WHERE specifies from 2 to 8 columns (inclusive) from one table
5. The table has been parsed and at least one column has ndistinct <> 1
6. Columns are not covered by a composite index (there is another optimization for this,
enable_index_path_selectivity)
set pg_stat_advisor.suggest_statistics_threshold = 0.33 ;
drop table if exists t;
create table t(i int, j int);
insert into t select i/10, i/100 from generate_series(1, 1000000) i;
analyze t;
explain (analyze, buffers, timing off) select * from t where i = 100 and j = 10;
-> Parallel Seq Scan on t (cost=0.00..10675.00 rows=1) (actual rows=3 loops=3)
select pg_sleep(1);
\dX List of extended statistics
Schema | Name | Definition | Ndistinct | Dependencies | MCV
--------+------------+-------------+-----------+--------------+--------
public | t_i_j_stat | i, j FROM t | defined | defined | defined
\i cat $PGDATA/log/postgresql-*.log | grep pg_stat_advisor
LOG: pg_stat_advisor: successfully created extended statistics from public.t
The patch has been submitted to the community https://www.postgresql.org/message-id/aa034271-

821c-42f3-92a1-b4112111c9c2%40tantorlabs.com

405Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• automatically detects queries where the planner
underestimates or overestimates the number of rows
returned (actual rows differ from planned rows)

• If the discrepancy ratio exceeds the specified threshold,
creates extended statistics on the table

Библиотека pg_stat_advisor

set pg_stat_advisor.suggest_statistics_threshold = 0.33;
create table t (i int, j int);
insert into t select i/10, i/100 from generate_series(1, 1000000) i;
analyze t;
explain (analyze, buffers, timing off) select * from t where i = 100 and j = 10;
select pg_sleep(1);
\dX

List of extended statistics
Schema | Name | Definition | Ndistinct | Dependencies | MCV
--------+------------+-------------+-----------+--------------+--------
public | t_i_j_stat | i, j FROM t | defined | defined | defined
\i cat $PGDATA/log/postgresql-*.log | grep pg_stat_advisor
LOG: pg_stat_advisor: successfully created extended statistics from public.t

Configuration parameters enable_temp_memory_catalog and enable_delayed_temp_file

When creating and deleting temporary tables in PostgreSQL, changes are made to the system catalog
tables, despite the fact that temporary tables are only accessible to the process in whose session they
were created. This can lead to bloating of the system catalog tables and additional load on the instance
from autovacuum processes. The most bloated are pg_attribute, pg_class, pg_depend, pg_type.
enable_temp_memory_catalog parameter allows you to save metadata of temporary objects in the

local memory of the process that works with them and not make changes to the system catalog tables.
The enable_temp_memory_catalog parameter eliminates changes to any system catalog tables
when working with temporary tables. The parameter can be enabled at different levels, including the
session level.
When using the parameter, the local memory of the server process is used to store metadata instead

of system catalog table blocks. Using the parameter does not require setting memory allocation
parameters (work_mem, maintenance_work_mem). The speed of access to the metadata of an already
created temporary table is higher, since the metadata is stored in the local memory of the server
process and there is no need to use locks to access the tables and indexes of the system catalog,
which reduces contention. The parameter changes the method of storing metadata, the method of
storing data in temporary objects and the method of accessing data do not change, except for the case
when only temporary tables are affected in the transaction. If the transaction does not affect permanent
storage objects, then the transaction is committed faster.
enable_delayed_temp_file parameter speeds up work with temporary tables (~15%), allowing you

to avoid creating temporary table files while there is enough memory in the local buffer of the server
process.

406Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• enable_temp_memory_catalog allows you to save
metadata of temporary objects in the local memory of the
process that operates on them and not make changes to the
system catalog tables
› the speed of access to metadata of an already created

temporary table is higher
› the way data is stored in temporary objects and the way data is

accessed does not change
• enable_delayed_temp_file speeds up work with

temporary tables by allowing temporary table files not to be
created until the local buffer memory of the server process is
sufficient.

Options enable_temp_memory_catalog and
enable_delayed_temp_file

enable_large_allocations parameter

Increases the size of the StringBuffer in the local memory of instance processes from 1 gigabyte to 2
gigabytes . The size of one table row when executing SQL commands must fit in the StringBuffer. If it
does not fit, then any client with which the server process works will receive an error, including the
pg_dump and pg_dumpall utilities . The size of a table row field of all types cannot exceed 1 GB,
but there can be several columns in the table and the size of the row can exceed both a gigabyte and
several gigabytes.
pg_dump utility may refuse to dump such rows because it does not use the WITH BINARY option of
the COPY command . For text fields, a non-printable character occupying one byte will be replaced by
a sequence of printable characters occupying two bytes (for example, \n), and the text field may
increase in size up to twice.
postgres=# select * from pg_settings where name like '%large%'\gx
name | enable_large_allocations
setting | off
category | Resource Usage/Memory
short_desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser
vartype | bool
boot_val | off
and for command line utilities:
postgres@tantor:~$ pg_dump --help | grep alloc
--enable-large-allocations enable memory allocations with size up to 2Gb

The parameter can be set at the session level. The StringBuffer is allocated dynamically during the
processing of each line, not when the server process starts. If there are no such lines, the parameter
does not affect the operation of the server process.
This problem occurs with the row of the config table of the 1C:ERP applications, Integrated

Automation, Manufacturing Enterprise Management. Example:
pg_dump: error: Dumping the contents of table "config" failed: PQgetResult()
failed.
Error message from server: ERROR: invalid memory alloc request size 1462250959
The command was: COPY public.config
(filename, creation, modified, attributes, datasize, binarydata) TO stdout;

407Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• increases the size of StringBuffer from 1 gigabyte to 2 gigabytes

• can be set at session level and by pg_dump, pg_dumpall utilities

• the problem occurs with the row of the config table of the 1C:ERP
applications, Integrated automation, Manufacturing enterprise
management

enable_large_allocations parameter

postgres=# select * from pg_settings where name like '%large%'\gx
name | enable_large_allocations
setting | off
category | Resource Usage/Memory
short_desc | whether to use large memory buffer greater than 1Gb, up to 2Gb
context | superuser
vartype | bool
boot_val | off

postgres@tantor:~$ pg_dump --help | grep alloc
--enable-large-allocations enable memory allocations with size up to 2Gb

pglz compression algorithm

pglz data compression algorithm has been optimized in the Tantor Postgres DBMS . The optimization
removes potentially redundant operations, increasing the compression speed by 1.4 times.
pglz compression algorithm is used by default for TOAST compression.
postgres=# \dconfig *compress*
List of configuration parameters
Parameter | Value
---------------------------+----------
default_toast_compression | pglz
libpq_compression | off
wal_compression | off
(3 lines)
Compression is used only for variable-width data types (e.g. int is fixed-length and uncompressed,

text is variable-length and compressed) and is used only when the column storage mode is MAIN or
EXTENDED. EXTENDED is the default for most data types that support storage other than PLAIN. The
storage mode can be set with the command:
ALTER TABLE name ALTER COLUMN column SET STORAGE { PLAIN | EXTERNAL | EXTENDED |
MAIN };
The compression algorithm can be changed at the column level:
ALTER TABLE name ALTER COLUMN column SET COMPRESSION {DEFAULT | pglz | lz4};
Technical details of optimizations of the pglz algorithm code in the Tantor Postgres DBMS:
1) A more compact hash table is used with uint16 indexes instead of pointers.
2) The prev pointer in the hash table is ignored.
3) More efficient 4-byte comparison operations are used instead of 1-byte ones.
Also macro functions are replaced with regular functions (does not affect performance).
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-connection.html#GUC-LIBPQ-

COMPRESSION

408Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres optimizes pglz data compression algorithm
• The optimization removes potentially redundant operations,

increasing compression speed by 1.4x.
• Compression is used only for variable-width data types and is the

default for most data types that can use compression.
• pglz compression algorithm is used by default for TOAST

compression.

pglz compression algorithm

postgres=# \dconfig *compress*
List of configuration parameters
Parameter | Value
---------------------------+----------
default_toast_compression | pglz
libpq_compression | off

wal_compression | off

libpq_compression parameter

libpq_compression configuration option enables compression support in the libpq library,
implemented by a new libpq_compression configuration option . The functionality can be used
by client applications and drivers written in C or other languages that support API calls to C.
libpq_compression parameter can take the following values: off, on, lz4, zlib . By default,
libpq_compression = off .
Compression is especially useful for importing/exporting data using the COPY command and for

replication operations (both physical and logical). Compression can also improve response times for
queries that return large amounts of data (e.g. JSON, BLOB, text, etc.)
This parameter controls the available compression methods for traffic between the client and the

server. It allows you to reject compression requests even if the server supports this feature (for
example, due to security or CPU consumption reasons). For more precise control, you can specify a list
of allowed compression methods. For example, to allow only the lz4 and zlib methods, you can set the
parameter value to lz4, zlib. You can also specify the maximum compression level for each method, for
example, by setting the parameter value to lz4:1, zlib:2, the maximum compression level for the lz4
method will be set to 1, and for the zlib method to 2. If the client requests compression with a higher
compression level, the maximum allowed level will be set. By default, the maximum possible
compression level for each algorithm is 1.
Appeared starting with version 15.4 of Tantor Postgres, not present in vanilla PostgreSQL 17.
https://docs.tantorlabs.ru/tdb/en/17_5/se/runtime-config-connection.html#GUC-LIBPQ-

COMPRESSION

409Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• default value off
• defines the list of supported network traffic compression

algorithms
• valid values: off, on, lz4, zlib
• You can set the compression level, for example:
alter system set libpq_compression =
'lz4:1,zlib:2';

libpq_compression parameter

Parameter wal_sender_stop_when_crc_failed

The wal_sender_stop_when_crc_faile d configuration parameter enables checksum verification of redo
log records before they are transmitted to clients via the replication protocol. The walsender process is
used to transmit redo log records to replicas and other clients (pg_recevewal), and reads WAL
segments from the file system. Redo log records are protected by checksums, but by default walsender
does not verify the checksums.
wal_sender_stop_when_crc_failed configuration parameter is set to true , walsender

processes will check the checksums of log records before sending them to clients. If the checksum
does not match, the processes will try to read the record from the WAL buffer. If there is no record in
the log buffer or the checksum does not match, walsender will stop. This will prevent bad pages from
propagating to replicas and WAL archives.

410Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Reduces the likelihood of corrupted log records being
transferred to replicas

• disabled by default
• When enabled, walsender processes will check the checksums

of log records before transmitting them to clients. If the
checksum does not match, the processes will try to read the
record from the log buffer (WAL buffer). If there is no record in
the log buffer or the checksum does not match, walsender
will stop

Parameter wal_sender_stop_when_crc_failed

backtrace_on_internal_error parameter

This option is in the Developer Options group, meaning it is not used in production. If this option is
enabled and an error with the XX000 code (internal_error) occurs, the stack trace is written to the
diagnostic log along with the error message. This is useful for debugging internal errors that do not
typically occur in a production environment. Disabled by default.

411Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The parameter belongs to the Developer Options group, i.e. it
is not used in industrial operation.

• If this option is enabled and an error with code XX000
(internal_error) occurs, a stack trace is written to the diagnostic
log along with the error message.
› This is useful for debugging internal errors that don't normally

occur in production.
• Disabled by default.

backtrace_on_internal_error parameter

uuid_v7 extension

PostgreSQL has an optimization for inserting into a btree index, which allows not to descend from the
root of the index tree. The server process that inserted into the right leaf block remembers the
reference to it during subsequent insertions if the new value is greater than the previous one (or empty)
and does not pass the path from the root to the leaf block. The optimization is used for the number of
levels in the index starting from the second (macro in the PostgreSQL core code
BTREE_FASTPATH_MIN_LEVEL).
When using the uuid type as a unique key, uuidv7() generates increasing values and the

optimization works. When using v4 (and others), there will be no optimization of fast insert, since
random values are inserted, not increasing ones. Moreover, inserting into different leaf blocks of the
index leads to an increase in the volume of the log due to writing more full page images (FPI) to the log.
Example test:
pgbench -i
echo "insert into tt1(data) values(1);" > txn.sql
create extension if not exists "uuid-ossp";
create extension if not exists pg_uuidv7;
create table tt1 (id uuid default uuidv7() primary key, data bigint);
vacuum analyze tt1;
pgbench -T 30 -c 16 -f txn.sql
select count(*), pg_indexes_size('tt1') from tt1;
drop table if exists tt1;
create table tt1 (id bigint generated by default as identity primary key, data
bigint);
Скорость вставки сравнима: для uuidv7() tps = 1734, для bigint tps = 1707.
The sizes of indexes on a uuid column are larger than the size of an index on a bigint column because

the size of a uuid field (16 bytes) is twice as large as the size of a bigint field (8 bytes). For uuidv7, the
number of rows in the test example is 97172, and the index size is 3088384 bytes, for bigint, the
number of rows is 99050, and the index size is 2236416 bytes.
https://docs.tantorlabs.ru/tdb/en/17_5/se/pg_uuidv7.html

412Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• extension adds high-speed generation of uuid_v7
• uuid_v7 generates incremental values, allowing for btree

index insertion optimization
› with very frequent insertions in the session, high speed, not

slower than with bigserial
› the index structure remains optimal and compact

• uuid takes 16 bytes, bigint 8 bytes
• example of use:

uuid_v7 extension

create extension if not exists " uuid-ossp ";
create extension if not exists pg_uuidv7 ;
create table tt1 (id uuid default uuidv7() primary key, data bigint);
create table tt2 (id bigint generated by default as identity primary key, data bigint);
select count(*), pg_indexes_size('tt1') from tt1;

pg_tde (Transparent Data Encryption) Extension

Implements "transparent" data encryption (Transparent Data Encryption). Transparency means that
the client receives and transmits unencrypted data. The purpose of this option is to prevent access to
encrypted data when stealing cluster data files and log (WAL) files without stealing files (devices) with
keys . pg_tde does not encrypt data in memory (in the buffer cache) and when transmitting over the
network . On Astra Linux, the lib gost- astra package configures OpenSSL automatically and encryption
is performed by protocols with a symmetric key: AES, Magma, Kuznyechik, ChaCha20.
You can encrypt existing tables:
ALTER TABLE t SET ACCESS METHOD tde_heap;
A configuration parameter can be set to encrypt the tables created:
ALTER SYSTEM SET default_table_access_method = tde_heap;
SET default_table_access_method = tde_heap;
The tde_heap access method works on top of the heap access method. The buffer cache stores data

in unencrypted form.
Only rotation of the main key is implemented. Each file is encrypted block by block (8Kb) with its own

key. To rotate the keys that encrypt the files, it would be necessary to re-encrypt the files.
Peculiarities:
1) Physical and logical replication are supported.
2) System catalog tables are not encrypted.
3) pg_rewind does not work with encrypted WAL yet, this will be implemented in future versions.
4) WAL-G does not support sending WAL deltas if the WAL is encrypted.
5) WAL are encrypted completely. Tables (including temporary ones) are encrypted with dependent

objects: TOAST, indexes.
https://docs.tantorlabs.ru/tdb/en/17_5/se/pg_tde.html

413Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Implements "transparent" data encryption (Transparent Data
Encryption)

• Transparency means that the client receives and transmits
unencrypted data.

• Does not encrypt data in memory (in the buffer cache) and
when transmitted over the network

• Encryption is performed by protocols: AES, Magma,
Kuznyechik, ChaCha20

• Physical and logical replication are supported
• System catalog tables are not encrypted.
• pg_rewind does not work with encrypted WAL yet
• WALs are encrypted completely

pg_tde (Transparent Data Encryption) Extension

Validator oauth_base_validator

Tantor Postgres 17 has an oauth (OAuth 2.0) authentication method that will appear in PostgreSQL
version 18. This method , similar to radius , uses an external service for authentication. The oauth
method is inserted into the fourth field of the line in the pg_hba.conf file . Example:
#TYPE DB USER ADDR METHOD
local all all oauth issuer="http://1.1.1.1:80/realms/a" scope="openid" map="o1"
Names can be matched via pg_ident.conf :
MAP SYSTEM-USERNAME PG-USERNAME
o1 "0fc72b6f-6221-4ed8-a916-069e7a081d14" "alice"
It is possible to map via the validator code, if it is implemented in the validator . In this case, instead of
map="o1" in the line pg_hba.conf you need to insert the option delegate_ident_mapping=1
To use the oauth authentication method , you need to write a "validator" in C. The library name is

specified in the configuration parameter:
alter system set oauth_validator_libraries = 'oauth_base_validator';
Tantor Postgres comes with a library with a validator.
To be able to use the http protocol, you need to use an environment variable:
export PGOAUTHDEBUG="UNSAFE"
and run the client:
psql "user=alice dbname=postgres oauth_issuer=http://1.1.1.1:80/realms/a
oauth_client_id=user1 oauth_client_secret=AbCdEf123GhIjKl"
A message will appear telling you where to go and what code to enter.
Visit http://1.1.1.1:80/realms/a/device and enter the code: XYZX-XYZO
After entering the code at the external service address, the connection will be established and psql

will prompt you:
postgres=>

https://docs.tantorlabs.ru/tdb/en/17_5/se/oauth-base-validator.html

414Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Tantor Postgres 17 has an oauth (OAuth 2.0) authentication method,
which will appear in PostgreSQL version 18

• This method uses an external service for authentication.
• oauth method is inserted into the fourth field of the line in the
pg_hba.conf file

• To use the oauth authentication method, you need to write a "validator"
in C

• In Tantor Postgres, the library with the validator is supplied
• Example of authentication in psql:

Validator oauth_base_validator

#TYPE DATABASE USER ADDRESS METHOD
local all all oauth issuer="http://1.1.1.1:80/realms/a" scope="openid" map="o1"

psql "user=alice dbname=postgres oauth_issuer=http://1.1.1.1:80/realms/a oauth_client_id=user1
oauth_client_secret=AbCdEf123GhIjKl"
Visit http://1.1.1.1:80/realms/a/device and enter the code: XYZX-XYZO
postgres=>

credcheck library

Uses a library that can be loaded at the cluster level (shared_preload_libraries parameter)
and for a single session (using the LOAD credcheck command). When loading, it registers 30
configuration parameters that can be used to set password complexity checks, password guessing
protection, password reuse parameters, a list of roles that are not affected by checks, etc.
postgres=# LOAD 'credcheck';
postgres=# CREATE EXTENSION credcheck;
postgres=# \dconfig credcheck.*

Parameter | Value
--------------------------------------+-------
credcheck.auth_delay_ms | 0
credcheck.encrypted_password_allowed | off
credcheck.max_auth_failure | 0
credcheck.no_password_logging | on
credcheck.password_contain |
...
credcheck.username_min_upper | 0
credcheck.username_not_contain |
credcheck.whitelist |
(30 rows)
You can install an extension that has 8 functions and 2 views.
The extension is triggered when a role is created, renamed, password is changed, authentication

occurs.
The credcheck.max_auth_failure parameter: the number of unsuccessful authentication attempts

allowed for a user before blocking. The credcheck.auth_delay_ms parameter allows you to enter a
delay in case of unsuccessful password entry, which protects against password guessing. To protect
against password guessing, you can use the standard auth_delay extension , but this method of
protection against guessing aggravates DDOS attacks, since server processes hold resources for the
duration of the delay, unlike blocking accounts.
https://docs.tantorlabs.ru/tdb/en/17_5/se/credcheck.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/auth-delay.html

415Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Uses a library that can be loaded at the cluster level (
shared_preload_libraries parameter) and for a single session
(using the LOAD credcheck command)

• When loading, it registers 30 configuration parameters that can be
used to set password complexity checks, protection against password
guessing, password reuse parameters, a list of roles for which checks
do not apply, etc.

• The extension has 8 functions and 2 views.
• The extension is triggered when a role is created, renamed, password

is changed, authentication is performed.

credcheck library

postgres=# \dconfig credcheck.*
Parameter | Value

--------------------------------------+-------
credcheck.auth_delay_ms | 0
credcheck.encrypted_password_allowed | off
credcheck.max_auth_failure | 0
...
credcheck.whitelist |
(30 rows)

fasttrun and online_analyze extensions

TRUNCATE temporary table results in deletion and creation of files with new names, row in pg_class is
updated. Old row versions may not be purged if the database horizon is long and pg_class and indexes
become bloated.
The fasttrun extension consists of one function fasttruncate('name') . When using the function,

the temporary table is truncated, the file names do not change. 1C applications use this function call
instead of the TRUNCATE command. The function works only with temporary tables:
select fasttruncate('t');
ERROR: Relation isn't a temporary table
To use the extension, you need to download the library and install the extension:
alter system set shared_preload_libraries = fasttrun, fulleq, mchar;
create extension fasttrun;
After inserting or changing rows in temporary tables, it may be useful to re-compile statistics for the

scheduler. 1C Enterprise, starting with version 8.3.13, executes the ANALYZE command after inserting
rows into a temporary table. For other applications that do not do this, you can use the
online_analyze extension . You should not load it for all sessions, because if statistics are
collected by a separate command, the automatic collection does not know about it and repeats the
same action, which leads to unnecessary resource consumption. Moreover, statistics are collected
synchronously, which slows down the execution of commands that trigger the extension. An example
of using the extension at the session level:
load 'online_analyze';
set online_analyze.enable = on;
set "online_analyze.verbose" = on;
set online_analyze.table_type = 'temporary';
The double quotes around the second parameter are necessary because verbose is a reserved word.

This parameter executes the ANALYZE VERBOSE command. After the command that results in the
analysis is executed, INFO-level notifications are sent to the caller of the command.
https://docs.tantorlabs.ru/tdb/en/17_5/se/fasttrun.html
https://docs.tantorlabs.ru/tdb/en/17_5/se/online_analyze.html

416Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Truncate temporary tables updates pg_class table
• The fasttrun extension contains the fasttruncate function

› the files name does not change
› system catalog tables do not change
› can be used instead of the TRUNCATE command
› works only with temporary tables

• After truncation or other commands, statistics can be collected
• To automatically collect statistics, you can use the online_analyze

extension
› The extension is configurable via configuration parameters

fasttrun and online_analyze extensions

select fasttruncate ('tt');
INFO: analyzing "pg_temp_5.tt"
INFO: "tt": scanned 0 of 0 pages, containing 0 live rows and 0 dead rows; 0 rows in sample, 0 estimated
total rows
INFO: analyze "tt" took 0.00 seconds
fasttruncate

(1 row)

mchar extension

Adds support for mchar, mvarchar types for compatibility with Microsoft SQL Server.
The following functions and operators are supported for mchar and mvarchar types:
length()
substr(str, pos[, length])
|| concatenation with different types (mchar || mvarchar)
< <= = >= > case insensitive comparison (ICU)
&< &<= &= &>= &> case-sensitive comparison (ICU)
LIKE
SIMILAR TO
~ (regular expressions)
Implicit casting of mchar to mvarchar and back
Support for b-tree and hash index types
Using Indexes to Perform the LIKE Operator
https://docs.tantorlabs.ru/tdb/en/17_5/se1c/mchar.html

417Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Adds support for mchar, mvarchar types for compatibility with
Microsoft SQL Server

• For mchar and mvarchar types, defines functions and operators:
› length()
› substr(str, pos[, length])
› || concatenation with different types (mchar || mvarchar)
› < <= = >= > case insensitive comparison (ICU)
› &< &<= &= &>= &> case-sensitive comparison (ICU)
› LIKE
› SIMILAR TO
› ~ (regular expressions)

• Add implicit typecasting from mchar to mvarchar and back
• support for b-tree and hash index types
• Using Indexes to Perform the LIKE Operator

mchar extension

fulleq extension

When using the "=" operator to compare values, if at least one of the operands is NULL, the result is
NULL. In 1C applications, the "==" operator is often used, which returns true when the operands are
equal or both are NULL. This is convenient when working with databases, especially with 1C, where the
operators and semantics for working with NULL differ from the SQL standard.
The "==" operator allows you to perform highly efficient value comparisons using the desired logic.
The "==" operator, when applied to two operands, returns true if they are equal or both are NULL.
The "==" operator, when applied to two operands, returns false if they are not equal or if one of them

is NULL.
https://docs.tantorlabs.ru/tdb/en/17_5/se1c/fulleq.html

418Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When using the "=" operator to compare values, if at least
one of the operands is NULL, the result is NULL.

• In 1C applications, the "==" operator is often used, which
returns true when the operands are equal or both have the
NULL value, which is convenient when working with
databases, especially with 1C, where the operators and
semantics of working with NULL differ from the SQL
standard.

• The “==” operator from the fulleq extension allows you to
perform highly efficient value comparisons using the desired
logic.

fulleq extension

orafce extension

The orafce extension is present in the Tantor Postgres SE build.
The extension contains functions and data types that are similar to those in Oracle Database.
The orafce functions and operators emulate some of the functions found in commonly used Oracle

Database procedure packages.
Using orafce reduces migration time and reduces the labor intensity of migrating application code.
When migrating from Oracle Database to Tantor Postgres, commands and program code may use

functions, procedures, and data types that are available in Oracle Database and not in PostgreSQL or
the SQL standard. Rewriting code can be quite labor-intensive, especially if there are many commands.
The orafce extension creates a large number of functions that work similarly to the functions and

procedures of the same name in Oracle Database.
These are the most common routines that are most often used in application code that works with

Oracle Database. The extension does not cover the entire set of functions, also the syntax for calling
some functions may differ, and you should not assume that SQL commands that were executed in
Oracle Database will be executed in postgres.
The purpose of the extension is to simplify code migration, enable code execution without significant

changes, and gradually rewrite and optimize the execution of SQL commands.
Also, the functions from this extension can be useful on their own.
In Oracle Database, program units (functions and procedures) are contained in "packages".
Postgres has a "schema" object that has similar functionality, so the extension creates quite a large

number of schemas whose names correspond to the names of packages in Oracle Database.
https://docs.tantorlabs.ru/tdb/en/17_5/se/orafce.html

419Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• An extension that provides features that simplify the
migration of application code from Oracle Database

• orafce emulates some of the Oracle Database functionality
and packages

• Creates a large number of functions and other objects and
data types that work the same way as their Oracle Database
counterparts

• The extension simplifies the migration of application code to
Tantor Postgres from Oracle Database

• The extension creates 15 schemas in which the extension
objects reside. The names of the eight schemas correspond
to the names of packages in Oracle Database.

orafce extension

http extension

The http extension is available in Tantor Postgres SE.
Installed into the database using the create extension http command;
The http extension provides the ability to execute HTTP and HTTPS requests directly from SQL.
For example, you can create a trigger that calls a web service, send data, and get a result that can be

used in the trigger logic. Using the HTTP protocol requires caution. In particular, you should avoid
creating situations where the server process is blocked due to a long wait for a response to an HTTP
request.
The pgsql-http functionality can be useful in the following tasks:
1) Integration with external APIs: in some cases it is more convenient to work via the REST protocol

directly from the database, especially when the data received from the web service needs to be used in
SQL commands. The pgsql-http extension allows you to do this by supporting all the main HTTP
protocol methods, including GET, POST, PUT, DELETE, and the relatively new PATCH method.
2) Interactive applications: In some use cases, PostgreSQL can be part of an interactive web

application where the database interacts with the user via HTTP. http can be used to send requests to
the application server and receive responses to them.
3) Real-time data processing: allows access to data that is constantly updated and available to clients

via the HTTP protocol. Using http, you can request this data directly from the database server.
https://docs.tantorlabs.ru/tdb/en/17_5/se/pgsql-http.html

420Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The http extension provides the ability to execute HTTP and
HTTPS requests directly from SQL

• Installed into the database using the create extension
http command;

• you can create a trigger that calls a web service, passes data
and gets a result that can be used in the trigger logic

• pgsql-http can be useful in:
• Integrations with external APIs
• Interactive applications
• Real-time data processing

http extension

pg_store_plans extension

All versions of Tantor Postgres include the pg_store_plans extension.
The extension provides the means to track the execution plan statistics of all SQL queries.
Used by the Tantor platform to collect query plan statistics.
Unlike other tools such as auto_explain, pg_stat_statements, or pg_stat_plans, pg_store_plans is

capable of collecting and storing full query plans, not just statistics or query text.
Allows you to analyze how requests are executed in the system.
Using pg_store_plans may increase the load on your system due to the additional collection and

storage of query plan information.
pg_store_plans:
1) Automatically saves query execution plans, allowing you to explore how queries execute in your

database.
2) Stores query plans over time, allowing you to analyze historical data and determine how changes in

application code or database affect query performance.
3) You can identify slow queries and determine which operations in a query plan take the most time.

This can help you optimize your queries and improve database performance.
4) Compatible with other extensions. pg_store_plans can be used together with other extensions such

as pg_stat_statements and pg_qualstats.
https://docs.tantorlabs.ru/tdb/en/17_5/se/pg_store_plans.html

421Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Extension for tracking SQL query execution statistics
• saves full query plans, not just their statistics or text
• Using pg_store_plans may increase the load on the system

due to collecting and storing additional data.

pg_store_plans extension

pg_variables extension

Tantor Postgres SE has a pg_variables extension.
The pg_variables extension allows you to define and use variables inside SQL queries on a PostgreSQL

server.
Variables can be used to store temporary values, exchange data between functions, store

intermediate results, etc.
Provides a means to track execution plan statistics for all SQL queries executed by the Tantor server.
Provides functions for working with variables of various types. Created variables exist only in the

current user session.
By default, created variables are not transactional (i.e. they are not affected by BEGIN, COMMIT,

ROLLBACK commands).
The extension allows storing in the server process memory the values of variables of various types,

including: numeric, text, date-time, logical, jsonb, arrays, composite types. Variables are available within
the session.
Variables can be used as an alternative to temporary tables. You can work with sets of values using

the pgv_select and pgv_insert functions. The speed of work can be higher than when working with data
using temporary tables. Variables can be used on physical replicas, temporary tables cannot. Variables
can have a composite type, including row image.
There are no overhead costs: no real transaction number is required, no files are used, the contents of

system catalog tables are not changed, and the operating system cache is not used. There is no
performance degradation when actively changing variable values, which is typical when actively
changing rows in temporary tables. Using the pgv_stats function, you can see how much memory is
used.
The functionality is similar to the variables of packages and application contexts in Oracle Database,

so the extension can be used when migrating applications to the Tantor Postgres DBMS.
https://docs.tantorlabs.ru/tdb/en/17_5/se/pg_variables.html

422Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• An extension that allows you to create and use variables in
SQL queries

• are not transactional by default, but can be transactional
• are stored in the memory of the server process
• exist only in the current user session
• can be used on physical replicas, temporary tables cannot
• the speed of work is comparable to temporary tables
• no overhead (doesn't require a real transaction number,

doesn't create files)

pg_variables extension

Benefits of the pg_variables extension

Using the pg_variables extension functions, you can store both scalar variables and composite types
(row images). Row searches can be performed by full scanning or by hash. Structures are stored in the
local memory of the process, and there is no point in using other methods such as btree.
wget https://edu.postgrespro.com/demo-medium-en.zip
zcat demo-medium.zip | psql
psql -d demo
create extension pg_variables;
demo=# \o t.tmp
\timing on\\
select pgv_insert('bookings', 'tickets', tickets) from tickets;
Time: 1634.973 ms (00:01.635)
demo=# create temp table tickets1 as select * from tickets;
Time: 557.808 ms
select * from tickets1 where ticket_no='0005432020304';
Time: 269.005 ms
select * from tickets where ticket_no='0005432020304';
Time: 0.266 ms

select * from pgv_select('bookings', 'tickets', '0005432020304'::char(13)) as (ticket_no character(13), book_ref
character(6), passenger_id character varying(20), passenger_name text, contact_data jsonb);

ticket_no | book_ref | passenger_id | passenger_name | contact_data
---------------+----------+---------------+----------------+---
0005432020304 | F5C81C | 7257 672943 | OLEG IVANOV | {"email": "oleg-ivanov_1984@postgrespro.ru", "phone":

"+70632852802"}
(1 row)
Time: 0.281 ms

The speed of selection from the in-memory table is slightly slower than selection from a regular table
by index. No index was created on the temporary table. If you create a btree index:
create index on tickets1(ticket_no);
Time: 5615.559 ms (00:05.616)
select * from tickets1 where ticket_no='0005432020304';
Time: 0.302 ms

then the speed of index access is wide and does not differ from a regular table.
select book_ref from tickets where passenger_name like '%G IVANOV' limit 1;
Time: 0.463 ms
select book_ref from tickets1 where passenger_name like '%G IVANOV' limit 1;
Time: 1.169 ms
select book_ref from pgv_select('bookings', 'tickets', '0005432020304'::char(13)) as (ticket_no character(13),

book_ref character(6), passenger_id character varying(20), passenger_name text, contact_data jsonb) where
passenger_name like '%G IVANOV' limit 1;
Time: 0.185 ms
https://pgconf.ru/media//2019/02/08/zakirov-pg-variables-pgconf-ru-2019.pdf

423Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• When comparing the speed of access to tables in memory, temporary,
normal, the results are not obvious

• The pg_variables extension is not standard and is not popular due to its
awkward syntax and poor performance.

Performance when using pg_variables

select * from pgv_select('bookings', 'tickets', '0005432020304' ::char(13)) as (ticket_no character(13),
book_ref character(6), passenger_id character varying(20), passenger_name text, contact_data jsonb) ;
Time: 0.281 ms
select * from tickets where ticket_no='0005432020304';
Time: 0.266 ms
select book_ref from tickets where passenger_name like '%G IVANOV' limit 1;
Time: 0.463 ms
select book_ref from tickets1 where passenger_name like '%G IVANOV' limit 1;
Time: 1.169 ms
select book_ref from pgv_select('bookings', 'tickets', '0005432020304'::char(13)) as (ticket_no
character(13), book_ref character(6), passenger_id character varying(20), passenger_name text, contact_data
jsonb) where passenger_name like '%G IVANOV' limit 1;
Time: 0.185 ms

Benefits of the pg_variables extension

Temporary tables cannot be used on replicas . The main advantage of the pg_variables extension is
that its temporary data storage capabilities can be used on replicas in the same way as on the master.
This allows complex analytics that require storing intermediate data to be implemented on replicas and
transferred to replicas.
It is important to remember that pg_variables stores data only in the local memory of the server

process and does not use temporary files. The saved objects are limited by the 1GB string buffer. This
is not a problem, since similar functionality in other DBMSs has similar memory limitations. The
disadvantage of pg_variables is its inconvenience (unusualness) of use, which can be bypassed. For
example, the function produces strings instead of the number of inserted strings, which generates
network traffic if the function is called from the client:
select pgv_insert('bookings','t2', pgbench_branches) from pgbench_branches;
pgv_insert

(1 row)
When selecting composite types, you have to specify the structure details:
select * from pgv_select('bookings','t2',1) as (bid int, bbalance int, filler
character(88));
bid | bbalance | filler
-----+----------+--------

1 | 0 |
select pgv_select('bookings','t2',1);
pgv_select

(1,0,)
One of the advantages of the extension is that it is possible to create transactional variables, i.e.

changes to values can be changed atomically upon transaction commit, rolled back. By default, non-
transactional variables are created.
https://docs.tantorlabs.ru/tdb/en/17_5/se/pg_variables.html

424Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• Временные таблицы нельзя использовать на репликах
• pg_variables extension functions can be used on replicas just like on

the master
• pg_variables stores data only in the local memory of the server process

and does not use temporary files.
• Variables can be transactional or not.
• The saved objects are subject to a string buffer limit of 1GB.

Benefits of the pg_variables extension

select pgv_insert('bookings','t2', pgbench_branches) from pgbench_branches;
select * from pgv_select('bookings','t2',1) as (bid int, bbalance int, filler character(88));
bid | bbalance | filler
-----+----------+--------

1 | 0 |
select pgv_select('bookings','t2',1);
pgv_select

(1,0,)

pg_stat_kcache extension

The extension complements pg_stat_statements and depends on it. It is not included in the standard
delivery. The extension works stably and has insignificant overhead. The shared_blks_read
statistics do not distinguish whether the pages (4K in size) that make up a block (8K in size) were
in the Linux page cache or were read from disk. The extension allows this distinction, it collects Linux
statistics by executing the getrusage system call after each command. The statistics collected by
the extension can be useful for determining the effectiveness of caching and possible bottlenecks. The
data collected by the system call is written to shared memory.
getrusage call is also used by the log_executor_stats=on configuration parameter

(disabled by default). This configuration parameter saves the collected operating system statistics to
the cluster diagnostic log, which is less convenient for viewing and the need to monitor the log size.
Unlike operating system utilities, the extension collects statistics with command-level detail. The

number of commands for which statistics are collected and the size of shared memory structures are
determined by the pg_stat_statements.max parameter (default 5000), since this extension
depends on the pg_stat_statements extension .
The extension uses two shared memory buffers:
select * from (select *,lead(off) over(order by off)-off as diff from
pg_shmem_allocations) as a where name like 'pg_%';
name | off | size | allocated_size | diff
-------------------------+-----------+-------+----------------+---------
pg_stat_statements | 148162816 | 64 | 128 | 128
pg_stat_statements hash | 148162944 | 2896 | 2944 | 2188544
pg_stat_kcache | 150351488 | 992 | 1024 | 1024
pg_stat_kcache hash | 150352512 | 2896 | 2944 | 1373056
The extension has the following parameters:
\dconfig *kcache*
pg_stat_kcache.linux_hz (default -1) is automatically set to the value of the linux CONFIG_HZ
parameter and is used to compensate for sampling errors. No need to change.
pg_stat_kcache.track=top parameter - analog of pg_stat_statements.track
pg_stat_kcache.track_planning=off analogue of pg_stat_statements.track_planning

425Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• complements and depends on pg_stat_statements
• collects linux statistics by executing getrusage system call after each

command execution
• Unlike operating system utilities, the extension collects statistics down to the

command level
• allows you to distinguish whether a block was read from disk or from the

page cache
• uses two buffers in shared memory

pg_stat_kcache extension

select * from (select *,lead(off) over(order by off)-off as diff from pg_shmem_allocations) as a where name
like 'pg_%';

name | off | size | allocated_size | diff
-------------------------+-----------+-------+----------------+---------
pg_stat_statements | 148162816 | 64 | 128 | 128
pg_stat_statements hash | 148162944 | 2896 | 2944 | 2188544
pg_stat_kcache | 150351488 | 992 | 1024 | 1024
pg_stat_kcache hash | 150352512 | 2896 | 2944 | 1373056
select name, setting, context, min_val, max_val from pg_settings where name like '%kcache%';

name | setting | context | min_val | max_val
-------------------------------+---------+-----------+---------+------------
pg_stat_kcache.linux_hz | 333333 | user | -1 | 2147483647
pg_stat_kcache.track | top | superuser | |
pg_stat_kcache.track_planning | off | superuser | |

Statistics collected by pg_stat_kcache

Commands to install the extension:
apt install clang-13
wget https://github.com/powa-team/pg_stat_kcache/archive/REL2_3_0.tar.gz
tar xzf ./REL2_3_0.tar.gz
cd pg_stat_kcache-REL2_3_0
make
make install
alter system set shared_preload_libraries = pg_stat_statements, pg_wait_sampling, pg_stat_kcache;
sudo systemctl restart tantor-se-server-16.service
create extension pg_stat_kcache;

The extension consists of two views and two functions:
\dx+ pg_stat_kcache
function pg_stat_kcache()
function pg_stat_kcache_reset()
view pg_stat_kcache
view pg_stat_kcache_detail

pg_stat_kcache_detail view has columns: query, top, rolname and gives data with command
precision. Statistics are given from 14 columns for planning and 14 columns for command execution.
pg_stat_kcache view contains summary statistics from pg_stat_kcache_detail , grouped by

database:
CREATE VIEW pg_stat_kcache AS SELECT datname, SUM(columns) FROM pg_stat_kcache_detail WHERE top IS TRUE GROUP BY

datname;

Statistics in both views:
exec_reads reads, in bytes
exec_writes writes, in bytes
exec_reads_blks reads, in 8K-blocks
exec_writes_blks writes, in 8K-blocks
exec_user_time user CPU time used
exec_system_time system CPU time used
exec_minflts page reclaims (soft page faults)
exec_majflts page faults (hard page faults)
exec_nswaps swaps
exec_msgsnds IPC messages sent
exec_msgrcvs IPC messages received
exec_nsignals signals received
exec_nvcsws voluntary context switches
exec_nivcsws involuntary context switches

426Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

Statistics in the pg_stat_kcache and pg_stat_kcache_detail views :
• reads_blks reads, in 8K-blocks
• writes_blks writes, in 8K-blocks
• user_time user CPU time used
• system_time system CPU time used
• minflts page reclaims (soft page faults)
• majflts page faults (hard page faults)
• nswaps swaps
• msgsnds IPC messages sent
• msgrcvs IPC messages received
• nsignals signals received
• nvcsws voluntary context switches
• nivcsws involuntary context switches

Statistics collected by pg_stat_kcache

alter system set shared_preload_libraries = pg_stat_statements, pg_wait_sampling, pg_stat_kcache;
create extension pg_stat_kcache;
\dx+ pg_stat_kcache
function pg_stat_kcache()
function pg_stat_kcache_reset()
view pg_stat_kcache
view pg_stat_kcache_detail

pg_wait_sampling extension

The extension is included in all Tantor Postgres builds. It provides statistics on wait events for all
instance processes. To install, you need to download the library and install the extension:
alter system set shared_preload_libraries = pg_stat_statements , pg_stat_kcache,
pg_wait_sampling , pg_qualstats, pg_store_plans;
create extension if not exists pg_wait_sampling;
pg_wait_sampling library must be specified after pg_stat_statements so that
pg_wait_sampling does not overwrite the queryids that are used by pg_wait_sampling .
The extension includes 4 functions and 3 views:
\dx+ pg_wait_sampling
function pg_wait_sampling_get_current(integer)
function pg_wait_sampling_get_history()
function pg_wait_sampling_get_profile()
function pg_wait_sampling_reset_profile()
view pg_wait_sampling_current
view pg_wait_sampling_history
view pg_wait_sampling_profile
Current wait events are displayed in the pg_stat_activity view . Many wait events are short-lived

and are unlikely to be "caught". The extension uses a background process pg_wait_sampling
collector , which samples at a frequency specified by the parameter
pg_wait_sampling.history_period or pg_wait_sampling.profile_period (default 10

milliseconds) polls the state of all processes in the instance, stores
pg_wait_sampling.history_size (default 5000, maximum determined by the int4 type) of
events in the history, and groups them into a "profile" of events accessible
through the pg_wait_sampling_profile view .
The history is used in a circular fashion: old values are overwritten in a circular fashion. Applications

can save the collected history by requesting the history from the view:
select count(*) from pg_wait_sampling_history ;
count

5000

427Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• included in all Tantor Postgres builds
• returns statistics on wait events of all processes in the instance
• To install, you need to download the library and install the extension:

• pg_wait_sampling library must be specified after pg_stat_statements to
prevent the extension from overwriting queryids.

• The extension uses the background process pg_wait_sampling collector
• the process polls the state of all processes in the instance
• The extension includes 4 functions and 3 views:

pg_wait_sampling extension

alter system set shared_preload_libraries = pg_stat_statements , pg_stat_kcache, pg_wait_sampling ;
create extension if not exists pg_wait_sampling;

\dx+ pg_wait_sampling
function pg_wait_sampling_get_current(integer)
function pg_wait_sampling_get_history()
function pg_wait_sampling_get_profile()
function pg_wait_sampling_reset_profile()
view pg_wait_sampling_current
view pg_wait_sampling_history
view pg_wait_sampling_profile

Waiting Event History

The history of waiting events can be viewed through the view:
\sv pg_wait_sampling_history
CREATE OR REPLACE VIEW public.pg_wait_sampling_history AS SELECT pid, ts,
event_type, event, queryid FROM pg_wait_sampling_get_history()
pg_wait_sampling_get_history(pid, ts, event_type, event, queryid)
pg_wait_sampling_get_history() function produces the same data and has no input parameters.
Obtaining data about what a process is currently executing by polling its state at some frequency is

used in Oracle Database ASH (Active Session History), which is part of AWR (Automatic Workload
Repository).
On an instance with many active sessions, the history of 5000 events can be overwritten in a fraction

of a second. The history stores wait events for all processes. If server processes do not encounter
locks, then 99.98% of wait events will be filled by background processes and are not related to
requests. For example, when running the standard test: pgbench -T 100 among 5000 events in the
history, you can sometimes see one line:
select * from pg_wait_sampling_history where queryid<>0;
pid | ts | event_type | event | queryid

-------+-------------------------------+------------+---------------------+---------------------
53517 | 2035-11-11 11:18:19.676412+03 | IPC | MessageQueueReceive | 6530354471556151986

The extension also uses shared memory to store its three structures:
select * from (select *, lead(off) over(order by off)-off as diff from
pg_shmem_allocations) as a where name like '%wait%';

name | off | size | allocated_size | diff
------------------+-----------+-------+----------------+-------
pg_wait_sampling | 148145920 | 17536 | 17536 | 17536

The largest part is occupied by a queue (MessageQueue) of a fixed size of 16Kb, memory for the list
of PIDs, memory for command identifiers (queryid) executed by processes. The size of the structure
for storing the list of PIDs of processes is determined by the maximum number of processes in the
instance. The number is determined by the configuration parameters and is approximately equal to:
max_connections, autovacuum_max_workers+1 (launcher) , max_worker_processes,
max_wal_senders+5 (main background processes). The memory for queryid is equal to the maximum
number of PIDs multiplied by 8 bytes (the size of the bigint type used by queryid).

428Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The extension uses "sampling" with a frequency of 1 millisecond (default is
10 milliseconds)

• history is available through the view:

• by default, the history of the last 5000 wait events is saved
• The extension also uses shared memory to store its three structures:

› queue (MessageQueue) fixed size 16Kb
› memory for PID list
› memory for command identifiers (queryid) executed by processes

Waiting Event History

select count(*) from pg_wait_sampling_history;
count

5000

select * from (select *, lead(off) over(order by off)-off as diff from pg_shmem_allocations) as a
where name like '%wait%';

name | off | size | allocated_size | diff
------------------+-----------+-------+----------------+-------
pg_wait_sampling | 148145920 | 17536 | 17536 | 17536

Расширение pg_background

The pg_background extension is available in Tantor SE and Tantor BE.
The extension allows arbitrary operations to be performed asynchronously (in the background). Using

the extension, arbitrary tasks can be manually implemented that need to be performed in the
background by an application or an administrator. The tasks will be executed by the instance's
background processes. The extension provides a programming interface for launching and interacting
with background processes, eliminating the need to use a low-level process interaction interface that
requires C programming.
The extension contains the following functions:
pg_background_launch - Accepts the SQL command the user wants to execute and the size of the

queue buffer. This function returns the ID of the background worker process.
pg_background_result - Takes a process ID as an input parameter and returns the result of the

executed command through a background worker process.
pg_background_detach - Takes a process ID and detaches a background process that is waiting for

the user to read its results.

429Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The extension allows asynchronously (in the background) to
execute an arbitrary command and implement arbitrary tasks
that need to be performed by the application or
administrator. The tasks will be executed by the background
processes of the instance.

• The extension contains the following functions:
› pg_background_launch()
› pg_background_result()
› pg_background_detach()

pg_background extension

pgaudit and pgaudittofile extensions

When using the log_connections and log_disconnections parameters , messages are written
to the cluster log. During production use, many other messages are written to this log. Logging
connections is not needed for routine analysis and clutters the general log, making it difficult to read
more important messages. It is desirable that logging of connections, ddl commands, and other
commands be performed not in the cluster log, but in a separate file or files.
Tantor DBMS has pgaudit and pgauditlogtofile extensions , which can be used to direct

messages about session creation and duration to a separate audit file or files. pgauditlogtofile
extension redirects the records created by the pgaudit extension to a separate file or files.
Without it, the records go to the cluster log. The pgauditlogtofile extension depends on the
pgaudit extension and does not work without it. To use the extensions, you only need to load two
libraries :
alter system set shared_preload_libraries = pgaudit, pgauditlogtofile ;
Extension libraries register configuration parameters in the instance, which can be used to customize

what is logged and where. Extensions operate independently and in parallel with the cluster log and are
controlled by their own parameters, which are prefixed with " pgaudit. "
The extension has 18 parameters. 7 parameters are related to the pgauditlogtofile library ,

including the pgaudit.log_connections and pgaudit.log_disconnections parameters .
These parameters are similar to the PostgreSQL parameters of the same name and can create similar
records, but only in a separate audit file, not in the cluster log, which is a big advantage of these
parameters . The advantage outweighs the disadvantages in the form of the need to load two libraries
and the inconvenience of their use. Library parameters are set only at the cluster level, specifying these
parameters in the environment variable leads to an error and the inability to connect, unlike the
standard parameters: export PGOPTIONS="-c pgaudit.log_connections=off"
psql
psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: parameter "pgaudit.log_connections" cannot be changed now
pgaudit.log_disconnections parameter , unlike the log_disconnections parameter , cannot

be set when creating a session.

430Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• pgaudit and pgauditlogtofile extensions can be used to
direct messages about session creation and duration to a
separate audit file or files

• For extensions to work, you need to download their libraries:

• Extensions operate independently and in parallel with the cluster
log and are controlled by their own parameters, which are
prefixed with " pgaudit. "

• pgaudit.log_connections and
pgaudit.log_disconnections parameters are similar to the
PostgreSQL parameters of the same name and can create similar
entries in a separate audit file

pgaudit and pgaudittofile extensions

alter system set shared_preload_libraries = pgaudit, pgauditlogtofile;

Configuring pgaudit and pgaudittofile extensions

The disadvantage of using extension parameters is that you need to set the pgaudit.log parameter
to at least 'misc' to create an audit log. But the value 'misc' forces the logging of DISCARD,
FETCH, CHECKPOINT, VACUUM, SET commands and bloats the audit log. With the default value ' none
', no log file is created. When set to 'role' and 'ddl', the parameters pgaudit.log_connections
and pgaudit.log_disconnections have no effect.
Installing the pgauditlogtoile extension with the command is useless because there are no objects in

the extension:
create extension pgauditlogtofile;
\dx+ pgauditlogtofile
Objects in extension "pgauditlogtofile"

(0 rows)
pgaudit extension includes two triggers and two trigger functions:
event trigger pgaudit_ddl_command_end
event trigger pgaudit_sql_drop
function pgaudit_ddl_command_end()
function pgaudit_sql_drop()
The substitution variable ' %F ' (or its equivalent %Y-%m-%d) in the audit log and cluster log names is

more convenient than the default value (%Y%m%d_%H%M) in that it does not create a separate file when
the instance is restarted. A new file is created once per day. Example of setting values:
alter system set pgaudit.log_filename = 'audit- %F .log';
alter system set log_filename = 'postgresql- %F .log';

431Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• seven parameters are related to
the pgauditlogtofile
library

• To create an audit log, you need
to set the pgaudit.log
parameter to at least 'misc'
› ' none ' - no audit log file is

created
› 'role' and 'ddl'
pgaudit.log_connections and
pgaudit.log_disconnections
have no effect

Configuring pgaudit and pgaudittofile extensions

postgres=# \dconfig pgaudi*
List of configuration parameters

Parameter | Value
--------------------------------+----------
pgaudit.log | none
pgaudit.log_autoclose_minutes | 0
pgaudit.log_catalog | on
pgaudit.log_client | off
pgaudit.log_connections | off
pgaudit.log_directory | log
pgaudit.log_disconnections | off
pgaudit.log_filename | audit-%F.log
pgaudit.log_level | log
pgaudit.log_parameter | off
pgaudit.log_parameter_max_size | 0
pgaudit.log_relation | off
pgaudit.log_rotation_age | 1d
pgaudit.log_rotation_size | 0
pgaudit.log_rows | off
pgaudit.log_statement | on
pgaudit.log_statement_once | off
pgaudit.role |
(18 rows)

pgcopydb utility

The utility automates copying a database to another cluster. A typical use case for pgcopydb is
migration to a new major version of PostgreSQL with minimal downtime. The utility implements the task
of parallelization with streaming data transfer according to the logic of "pg_dump -jN | pg_restore -jN"
between two running clusters, conducting these utilities. Supports parallel index creation, change
tracking and application, resuming interrupted overload, filtering objects.
pgcopydb - open source project https://github.com/dimitri/pgcopydb
https://docs.tantorlabs.ru/tdb/en/17_5/se/pgcopydb.html

432Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The utility automates copying a database to another cluster
• A typical use case for pgcopydb is migrating to a new major

version of PostgreSQL while minimizing downtime.
• The utility implements the task of parallelization with streaming

data transfer according to the logic "pg_dump -jN | pg_restore -
jN" between two working clusters, conducting these utilities

• Supports parallel index creation, change tracking and application,
resuming interrupted overload, object filtering

• Open source project

pgcopydb utility

pg_anon utility

pg_anon is an application written in python.
The application performs:
anon_funcs schema in databases , which contains a set of functions for masking (depersonalization,

anonymization) of data.
Search for sensitive data in a dictionary-based database.
Creating a dictionary based on search results (reconnaissance).
Saving and restoring using a dictionary. Separate dictionary files can be provided for different

databases.
Synchronize the contents or structure of specified tables between the source and target databases.
The application is downloaded and installed separately from the package.
https://github.com/TantorLabs/pg_anon
There is also an extension transp_anon - transparent anonymization of values on the fly of query

results from clients
https://docs.tantorlabs.ru/tdb/en/17_5/se/transp_anon.html

433Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

A program written in python performs:
• search for confidential data in the database
• creating a dictionary based on search results
• saving and restoring using dictionary
• synchronizing the contents or structure of specified tables

between the source and target databases
• data unloading with masking (depersonalization,

anonymization) according to specified templates

pg_anon utility

pg_configurator utility

The pg_configurator application is available for all Tantor Postgres DBMS builds. The application is
supplied separately, for example as a package.
It is a python script pg_configurator, installed at /usr/bin.
pg_configurator suggests recommended configuration parameters based on hardware resource

characteristics such as available memory, number of processors, disk space, etc. This allows you to
make optimal use of available resources and improve instance performance.
Project page https://github.com/TantorLabs/pg_configurator
Web version of the configurator: https://tantorlabs.ru/pgconfigurator

434Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• It is a python script pg_configurator, installed in /usr/bin
• suggests recommended configuration parameters based on

hardware resource characteristics such as available memory,
number of processors, disk space, etc. This allows for
optimal use of available resources and increases instance
performance

pg_configurator utility

The pg_diag_setup.py utility

It is a script written in python. The task solved by the utility is to call the utility on the database cluster
host, which will install and configure extension parameters according to the template and reserve the
parameter values so that the changes can be restored. It is assumed that the parameters of diagnostic
extensions such as pg_store_plans, pg_stat_statements, pg_stat_kcache, auto_explain, pg_buffercache,
pg_trace, pg_wait_sampling will be configured.
The utility does not restart the instance after making changes.
When running the utility:
1) reads configuration parameter files, taking into account include* parameters
2) creates a list of parameters specifying the source file
3) reads its default.yaml settings file , which specifies the extensions to be configured and

their configuration settings . Example file contents for an extension
pg_stat_statements :
shared_preload_lib: pg_stat_statements
create_cmd: CREATE EXTENSION pg_stat_statements
params :

pg_stat_statements.max: 10000
pg_stat_statements.track:all
pg_stat_statements.track_utility: "on"
pg_stat_statements.track_planning: "off"
pg_stat_statements.save: "on"
4) Checks for extension availability via pg_available_extensions by connecting to the instance via a

Unix socket
5) Updates the value of shared_preload_libraries with the ALTER SYSTEM command without

overwriting existing libraries, installs extensions (if possible)
6) Adds new parameters to the end of postgresql.conf , marking the added parameters with the

comment "Added by pg_diag_setup"
8) Creates a backup text file with the values of the configured parameters with a timestamp
9) Allows you to roll back changes to any backup created by the utility

435Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• The task performed by the utility is to call a utility on the database
cluster host that will install and configure extension parameters
according to a template and reserve the parameter values so that
changes can be restored.

• Checks for extension availability via pg_available_extensions
• Updates the value of shared_preload_libraries without

overwriting existing libraries
• Adds new parameters to the end of postgresql.conf
• Creates a backup text file with the values of the configurable

parameters with a timestamp
• Allows you to roll back changes to any backup

pg_diag_setup.py utility

pg_sec_check utility

Postgres Security Check is a utility written in Rust and designed to audit the security of PostgreSQL
database configurations. The utility allows you to automate the process of checking security
parameters, from operating system settings to PostgreSQL configuration parameters. Based on the
results of the checks, it creates reports on the problems identified and recommendations for their
elimination.
Possibility to bind checks to PostgreSQL versions (minimum and maximum supported versions).

Generates reports in HTML, JSON formats in Russian and English. Monitors the integrity of its files
using checksums.
Checks are executed by: .sql and .sh scripts
The results of the checks are validated by scripts in the Lua language, and they also generate reports

and recommendations.
The utility configuration file is also text, in .json format.
The utility has 68 checks that allow you to identify typical errors. The checks are described in the form

of scripts that can be edited.
Using the example of the scripts supplied with the utility, you can create your own checks; for new

checks, you need to write .sql .sh .lua scripts
https://docs.tantorlabs.ru/tdb/en/17_5/se/pg_sec_check.html

436Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• allows you to automate the process of checking security
parameters: from operating system settings to PostgreSQL
configuration parameters

• creates reports on identified problems and recommendations for
their elimination

• checks are performed by .sql and .sh scripts
• The results of the checks are validated by scripts in the Lua

language , and they also generate reports and recommendations
• checks the integrity of its files with checksums
• The utility has 68 checks
• you can create your own checks by writing .sql .sh .lua
scripts

pg_sec_check utility

WAL-G (Write-Ahead Log Guard) utility

WAL-G (Write-Ahead Log Guard) is a command line utility for creating encrypted backups of a
database cluster and archiving WAL files, their efficient sending/receiving in several streams (with
maximum speed and minimum load on the processor and memory) via the S3 protocol " from " and "to
" storage (cloud in the enterprise network or external) directly without creating intermediate files in the
host file system. WAL-G is designed to efficiently reserve the use of WAL segments, but is also capable
of creating PGDATA backups of the cluster.
The utility is supplied in deb or rpm packages. The package contains a single executable file WAL-G,

which is copied to the standard directory with executable files /opt/tantor/usr/bin .
Example of setting configuration parameters for WAL segment backup:
ALTER SYSTEM SET archive_command='wal-g wal-push "%p" >> ~/archive-command.log
2>&1';
ALTER SYSTEM SET restore_command='wal-g wal-fetch "%f" "%p" >>
~/restore_command.log 2>&1';
ALTER SYSTEM SET archive_mode=on;
Example of PGDATA backup command:
wal-g backup-push $PGDATA >> ~/backup-push.log 2>&1
Example of a command to restore from a backup (instance must be stopped):
wal-g backup-fetch $PGDATA LATEST
touch $PGDATA/recovery.signal
WAL-G can:
1) create backup copies of the cluster and WAL segments in "push" mode. The current WAL segment

is not backed up and the utility cannot be used as the only solution for ensuring high availability .
2) restore the cluster to a selected point in time in the past. It is possible to restore WAL segments

from the storage except for the current one (to which the instance processes wrote at the time the
cluster was stopped). Full recovery (without losing transactions) is possible only if the current WAL
segment was not lost
3) manage backups via S3 protocol: delete backups and associated log files
4) Encrypt files before transferring them to storage

437Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• utility for creating encrypted backup copies of a database cluster
(full and incremental) and archiving WAL segments, their highly
efficient sending/receiving via the S3 protocol "from" and "to"
storage (cloud storage in the enterprise network or external)
directly without creating intermediate files in the file system.

• Using the WAl-G utility you can:
› create backup copies of the cluster and WAL segments
› restore a cluster to a selected point in time in the past
› Manage S3 backups: delete unnecessary backups and associated

log files

WAL-G (Write-Ahead Log Guard) utility

Other extensions

For reference, here is a short description of the extensions that were not considered:
dbcopies_decoding - 1C library, provides logical replication slots when copying 1C databases
vector - full support for the high-dimensional vector data type: functions, operators, index support.

Freely distributed project https://github.com/pgvector/pgvector
pg_partman - automation of partitioned table support https://github.com/pgpartman/pg_partman
pg_qualstats - keeps statistics on predicates found in WHERE statements and JOIN clauses

https://github.com/powa-team/pg_qualstats
pg_hint_plan - hints to the optimizer in queries https://github.com/ossc-db/pg_hint_plan
plant hides indexes from the scheduler https://github.com/postgrespro/plantuner
pg_cron - intra-instance scheduler
pg_throttle - limit the amount of rows read in queries, allowing to reduce contention for input/output
pg_trace - tracing of running SQL queries. To obtain tracing, you need a client that will connect to the

background process port and receive debug information in json format. An example of use for
analyzing queries in 1C and an example of a client
https://habr.com/ru/companies/tantor/articles/915256/
pg_ddl_deploy - extension for logical replication , implementing the capture of DDL commands by

triggers and replication of DDL commands https://github.com/enova/pgl_ddl_deploy
pgq - a database queue from Skype. Message handlers (consumers) can be written in python and java

https://github.com/pgq/pgq

438Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

• dbcopies_decoding - 1C library, provides logical replication slots when
copying 1C databases

• vector - full support for large vector data type
• pg_partman - automation of partitioned table support
• pg_qualstats - maintains statistics on predicates found in WHERE clauses and

in JOIN clauses
• pg_hint_plan - hints to the optimizer in queries
• plantuner hides indexes from the scheduler
• pg_cron - intra-instance scheduler
• pg_throttle - limit the amount of rows read in queries, allowing to reduce

contention for input/output
• pg_trace - traces of running queries, can be useful for analyzing queries in 1C
• pg_ddl_deploy - extension for logical replication
• pqg - queue in database

Other extensions

Practice

1.orafce extension
2.pg_variables extension
3.page_repair extension
4.Debugging subroutines
1.Installing an extension from source code using pldebugger as an example
5.Handling Large Strings with StringBuffer
6.Finding orphaned files
The practical assignments for this chapter are optional and can be completed if time remains.

439Training Course "Tantor : PostgreSQL 17 Administration" Astra Group, "Tantor Labs"© 2025 www.tantorlabs.ru

1. orafce extension
2. pg_variables extension
3. page_repair extension

1. Preparing a replica
2. Preparing the table
3. Restoring a page with page_repair
4. Page Reset

4. Debugging subroutines
1. Installing an extension from source code using pldebugger as

an example
2. Debugging a function in pgAdmin
3. Debugging Subroutines in DBeaver

5. Handling Large Strings with StringBuffer
6. Finding orphaned files

Practice

	Introduction
	Installation
	Control
	psql
	Architecture
	Multiversion
	Routine maintenance
	Executing queries
	Configuring
	Logical structure
	Physical structure
	Logging
	Security
	Physical backup
	Logical backup
	Physical replication
	Logical replication
	Tantor Platform
	Tantor Postgres 17

